Industrial and Process Furnaces

Principles, Design and Operation

Second Edition

Peter Mullinger

Visiting Research Fellow, School of Chemical Engineering, University of Adelaide, South Australia

Barrie Jenkins Consulting Engineer, High Wycombe, Buckinghamshire, UK

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Butterworth-Heinemann is an imprint of Elsevier

Contents

Foreword to Second Edition	xiii
Foreword to First Edition	xυ
Preface to the Second Edition	xvii
Preface to the First Edition	xix
Acknowledgements	xxi
List of Figures	xxiii
List of Tables	xxxiii

Cha	pter 1	Introduction	1
1.1	What i	s a Furnace?	3
	1.1.1	Furnace Outline	4
	1.1.2	Furnace Classification	5
	1.1.3	Principle Objectives of Furnace Designers and Operators	5
1.2		are Furnaces Used? Brief Review of Current Furnace	
	Applica	ations and Technology	7
	1.2.1		7
	1.2.2	Cement and Lime	8
	1.2.3	Glass Making	11
		Metal Ore Smelting	13
		Metal Refining	16
		Flash and Fluid Bed Furnaces	18
	1.2.7	Metal Physical Processing	20
	1.2.8	Incinerators and Resource Recovery Furnaces	24
		Furnaces with Reducing Atmospheres	25
	1.2.10	Oil Refining and Petrochemical Furnaces	26
1.3	Drivers	s for Improved Efficiency	28
1.4	Conclu	ding Remarks	29
	Referen	nces	30
Cha	pter 2	The Combustion Process	31
2.1	Simple	Combustion Chemistry	32
		The Complete Oxidation of Carbon	32
		The Complete Oxidation of Hydrogen	32
		The Incomplete Oxidation of Carbon	33
		The Oxidation of Carbon Monoxide	33
2.2		ustion Calculations	33

2.3	Chemi	cal Reaction Kinetics	37
	2.3.1	Types of Reactions	38
	2.3.2	Reaction Rate Theory	38
	2.3.3	Reaction Rate Behaviour	41
	2.3.4	Burning Droplets and Particles	43
2.4	The Ph	nysics of Combustion	47
		The Role of Primary Air	50
	2.4.2	The Role of Swirl Flows	57
	2.4.3	Turbulence in Jets	57
	2.4.4	Secondary Flow Aerodynamics	59
		Effect of Excess Air on Fuel Consumption	61
	2.4.6	Multiple Burner Installations	62
	Nome	nclature	63
	Refere	nces	64
Cha	pter 3	Fuels for Furnaces	67
3.1	Gaseo	us Fuels	69
• • •		Properties of Natural Gas	69
		Manufactured Gas	69
		Wobbe Number or Index	71
		Flammability Limits	72
		Flame Radiation from Gaseous Fuels	75
3.2	Liquid		75
	Solid I		77
	3.3.1		79
3.4	Waste		79
		e of Fuel	80
		Furnace Performance	81
3.6	Safety		85
	Emissi		86
		nclature	86
	Refere		86
Cha	pter 4	An Introduction to Heat Transfer in Furnaces	89
4.1	Condu	action	90
		Steady State Conduction	91
		Transient Conduction	92
4.2	Conve	•	99
	4.2.1	Dimensional Analysis	100
	4.2.2	Application to Convective Heat Transfer	101
	4.2.3	Evaluating Convective Heat Transfer Coefficients	103
	4.2.4	High Temperature Convective Heat Transfer	107
4.3	Radia	•	112
	4.3.1		113
		Emissivity and Absorptivity	116

J

L

	4.3.3 View Factors	120
	4.3.4 Mean Beam Length	125
4.4	Electrical Heating	126
	4.4.1 Resistance Heating	126
	4.4.2 Arc Heating	128
	4.4.3 Induction Heating	129
	4.4.4 Dielectric Heating	130
	4.4.5 Infra-red Heating	131
	Nomenclature	131
	References	138
Cha	pter 5 Flames and Burners for Furnaces	139
5.1	Types of Flame	140
011	5.1.1 Premixed Flames	141
	5.1.2 Turbulent Jet Diffusion Flames	143
	5.1.3 Heterogenous Combustion	144
5.2		149
	5.2.1 The Essential Importance of Heat Flux Profiles	151
	5.2.2 Flame Stabilisation	152
5.3	Gas Burners	155
	5.3.1 Premixed Burners	155
	5.3.2 Turbulent Jet Diffusion Burners	162
	5.3.3 Precessing Jet Diffusion Burners	165
	5.3.4 Gas Nozzle Design	166
5.4		170
	5.4.1 Turndown	173
	5.4.2 Atomisers	173
5.5	Pulverised Coal Burners	180
5.6		182
	5.6.1 Single Burner Systems	185
	5.6.2 Multiple Burner Systems	188
	5.6.3 Combustion Air Duct Design	188
	5.6.4 Common Windbox and Plenum Design	191
5.7	, e	193
	5.7.1 Example of Combustion System Scaling	194
5.8	Furnace Noise	196
	5.8.1 Combustion Roar	198
	5.8.2 Nozzle and Turbulent Jet Noise	198
	5.8.3 Fan Noise	199
	5.8.4 Pipe and Valve Noise	199
	5.8.5 Furnace Noise Attenuation	200
	5.8.6 Combustion Driven Oscillations	201
	Nomenclature	204
	References	206

viii Contents

Chap	oter 6	Combustion and Heat Transfer Modelling	209
6.1	Physical Modelling		
		Thring-Newby Parameter	214
	6.1.2	Craya-Curtet Parameter	214
	6.1.3	Becker Throttle Factor	214
	6.1.4	Curtet Number	215
	6.1.5	Relationship Between Scaling Parameters	215
	6.1.6	Determining the Required Model Flows	216
	6.1.7	Applying the Scaling Parameter	216
	6.1.8	Applying a Post Measurement Correction	216
6.2	Math	ematical Modelling	217
	6.2.1	Simple Well Stirred Furnace Models	218
	6.2.2	Long Furnace Models	226
	6.2.3	Two and Three Dimensional Zone Models	228
	6.2.4	Computational Fluid Dynamics Models	232
	6.2.5	Particle Drag in Combustion System	238
6.3	Appli	cation of Modelling to Furnace Design	238
	Nome	nclature	239
	Refere	ences	241
Cha	pter 7	Fuel Handling Systems	245
7.1	Gas V	alve Trains	246
	7.1.1		248
7.2		Dil Handling Systems	249
· • -	7.2.1	- · ·	249
		Oil Valve Trains	252
7.3		rised Coal Handling and Firing Systems	253
		Raw Coal Bunkers and Feeders	254
		2 Coal Grinding and Drying	256
		3 Coal Mills	257
		4 Coal Mill Grinding Capacity	263
		5 Pulverised Coal Grinding and Firing Systems	265
		6 Coal System Drying Capacity	269
	7.3.	7 Coal Firing System Fans	273
	7.3.3	8 Fine Coal Storage	274
	7.3.	Fine Coal Feeding and Conveying	277
	7.3.1	D Pulverised Coal Conveying	279
7.4	Waste	e Fuel Handling	283
	7.4.1	Waste Gas Fuel Handling	283
	7.4.2	Waste Liquid Fuel Handling	284
	7.4.3	Solids Waste Fuel Handling	284
•	7.4.4	Environmental Benefits and Health Hazards of Waste	
		Fuel Utilisation	286
	Nome	enclature	287
	Refer	ences	287

•

2

Cha	pter 8	Furnace Control and Safety	289
8.1	Proces	s Control	290
	8.1.1	Basic Furnace Control Strategies	29 1
8.2		ce Instrumentation	292
	8.2.1	Temperature Measurement	292
	8.2.2	Heat Input Measurement	296
		Determination of Excess Air	299
8.3	Flue G	as Analysis	302
	8.3.1	Extractive Gas Sampling Systems and Analysers	302
		In-Situ Systems	309
8.4		ustion Control	313
8.5	Ensuri	ng Furnace Safety	315
		Risk Factors in Furnace Operation	315
		Furnace Start-up	317
		Operation with Insufficient Combustion Air	320
		Flame Quenching	321
		Eliminating Ignition Sources	321
8.6		r Management Systems	321
		Safety Requirements for Burner Management Systems	322
	8.6.2		324
	8.6.3	1	
	01010	Logic Controller Burner Management Systems	324
	8.6.4	Choosing an Appropriate Safety Integrity Level	326
		Determining the Safety Integrity Level of the BMS System	327
		Flame Detectors	330
		nclature	333
	Refere		334
		·····	001
Cha	pter 9	Furnace Efficiency	337
9.1	Furna	ce Performance Charts	340
9.2		and Energy Balances	343
	9.2.1	On-site Measurement	344
	9.2.2	Constructing Mass and Energy Balances	348
9.3		y Conversion	360
		Low and High Grade Heat	362
		Exergy and Pinch Point Analysis	364
9.4		Recovery Equipment	365
		Recuperative Heat Exchangers	366
	9.4.2	Regenerative Heat Exchangers	368
		General Heat Exchanger Design Procedure	368
9.5		fying Efficiency Improvements	371
- •0		nclature	374
	Refere		375
	*****10		0.0

Chap	ter 10 E	Emissions and Environmental Impact	377
10.1	Formati	on of Carbon Monoxide	379
10.2	Formati	on of Nitrogen Oxides	380
	10.2.1	Thermal NO_x Formation	381
	10.2.2	Fuel NO _x Formation	382
	10.2.3	Prompt NO _x Formation	384
	10 .2.4	NO _x Modelling	386
10.3	Formati	on of Sulphur Oxides	386
10.4	Formati	on of Intermediate Combustion Products	387
	10.4.1	Volatile Organic Compounds (VOCs)	387
	10.4.2	Polycyclic Aromatic Hydrocarbons (PAH)	388
	10.4.3	PCBs, Dioxins and Furans	388
10.5	Particul	ate Emissions	391
	10.5.1	Formation of Soot	392
	10.5.2	Formation and Composition of Fuel Ash	394
	10.5.3	Non-combustible Volatile Cycles	396
10.6	Environ	mental Control of Emissions	398
	10.6.1	Prevention and Abatement of Emissions	398
	10.6.2	Dispersion Modelling	409
	Referen	ces	411
Chap	ter 11 I	Furnace Construction and Materials	415
. 11.1	Basic Pe	erformance Requirements of the Furnace Structure	.416
		onstruction Methods	417
11,2		Brick Lining	419
		Monolithic Linings	422
		Furnace Steelwork	427
		Furnace Roof Construction	429
		Furnace Cooling Systems	431
11.3		I Engineering Considerations in the Use of Refractories	433
11.4		c Refractory Materials	435
		Testing of Refractories	436
		Properties and Uses of Refractories	437
11.5		esisting and Refractory metals	440
		Effect of Elevated Temperature on Metal Properties	4 41
		High Temperature Alloys	442
11.6		al Engineering Considerations in the Use of High Temperature	
	Metals		445
11.7		ding Remarks	447
	Referen		447
Chap	ter 12	Furnace Design Methods	457
12.1	Introdu	-	458
12.1		Design Constraints	460
		Cost of Design Changes	461

,

12.2	Conceptual Design	462
	12.2.1 Process Functions	464
	12.2.2 Defining the Physical and Chemical Changes	466
	12.2.3 Preliminary Mass and Energy Balances	468
	12.2.4 Reliability of Available Process Knowledge	468
	12.2.5 Effect of Upstream and Downstream Processes	470
	12.2.6 Fuel Choice	472
	12.2.7 Potential for Heat Recovery and Choice of Equipment	476
12.3		481
12.4	Burner Selection	498
12.5	Detailed Analysis and Validation of the Furnace Design	501
12.6	Furnace Instrumentation and Controls	503
	Nomenclature	505
	References	506
Chap	ter 13 Economic Evaluation	507
-		
	Cost Accounting	508
13.2	L	509
	13.2.1 Fixed and Variable Costs	510
122	13.2.2 Capital Costs	510
13.3	<i>i</i>	511
13.4		511
13.5	, 0	514
	13.5.1 Order of Magnitude Costing	514
12 (13.5.2 Study Costing	515
13.6		517
13.7	8.	518
	13.7.1 Base Case Costing	525
	13.7.2 Case 1 Costing – Re-Brick with No Insulation	527
	13.7.3 Case 2 Costing – Conversion to Natural Gas	527
	13.7.4 Case 3 Costing – Conversion to Natural Gas with	
	New Calcium Silicate Lining	528
	13.7.5 Case 4 Costing – Reinstate Stack Recuperators	529
	13.7.6 Case 5 Costing – Conversion to Blast Furnace Gas	
	with Stack Recuperators	. 529
	13.7.7 Case 6 Costing – Installation of Self-Recuperative Burners	531
	13.7.8 Case 7 Costing – Oxygen Enrichment	531
	13.7.9 Cost-Benefit Analysis	532
13.8	Post Project Analysis	536
	References	536
Chap	ter 14 Selected Examples of Real Furnace Applications	537
14.1		538
I 11 I	14.1.1 The Lime Regeneration Process	539

14.1.1 The Lime Regeneration Process

	14.1.2	Design Objectives for the Multi-Fuel Burner	541
	14.1.3		542
		Commissioning	546
14.2		ing Flash Furnace Design	547
	-	Site Investigation	548
		Physical Modelling	552
		Mathematical Modelling	553
14.3		ution to the Design of a New Reforming Process for	1
		Il Applications	556
		Reformers for Fuel Cells	558
	14.3.2	Burner Design	560
	14.3.3	Physical and Mathematical Modelling	562
	14.3.4	Full Size Testing	567
	14.3.5	Concluding Remarks	570
14.4	Resolvin	ng Tube Internal Coking and Premature Tube Failure	
	in a Ref	inery Heater	571
		Diagnostic Modelling	573
		Correcting the Poor Air Distribution	576
		Burner Modifications	578
14.5		essful Attempts to Resolve Severe Problems with a	
		er Cement Kiln	580
		Cement Manufacture by the Dry Process	580
		Diagnosis of the Problem	583
		Attempted Resolution of the Problem	591
		Concluding Remarks	593
14.6		ation and Elimination of Coal Firing System Problems	595
		A flawed and Dangerous Coal Firing System	596
	14.6.2		
		by an Upgrade of a Poorly Performing Coal Firing System	599
14.7		ding Remarks on Implementation	605
	Referen	ces	605
Chapt	er 15 l	Future Trends and Concluding Remarks	607
-		in New Materials	608
		in Furnace Emissions and Fuels for Furnaces	609
13.2		Carbon Capture and Storage	610
153		ts for Alternative Electrical Energy as a Power Source	619
15.4	-	in Furnace Controls	620
15.5		pplications for Furnaces	621
15.6		ding Remarks	621
10.00	Referen		622
Index			625

-

1.41.1860