ROBERT S. GARFINKEL,

Graduate School of Management University of Rochester

GEORGE L. NEMHAUSER,

Department of Operations Research Cornell University

٥

Integer Programming

D

A WILEY-INTERSCIENCE PUBLICATION

JOHN WILEY & SONS

Contents

1-

1	Introduction		
	` 1.1	Background	2
	1.2	Defining an Integer Linear Programming Problem	5
	1.3	Methods for Solving the ILP	7
	1.4	Formulating Models in Binary Variables	10
	1.5	Applications	13
	1.6	Exercises	19
	1.7	Notes	20
2	Linear Programming		24
	2.1	Introduction	24
	2.2	Basic Solutions, Extreme Points, and Optimal Solutions	26
	2.3	Improved Basic Feasible Solutions and Optimality Conditions	28
	2.4	The Simplex Algorithm	30
	2.5	Finding a First Basic Feasible Solution. The Two-Phase Method	36
	2.6	Degeneracy and Cycling	38
	2.7	The Determinant and Inverse of the Basis Matrix	41
	2.8	A Modified Simplex Algorithm for Bounded Variables	43
	2.9	Duality	48
	2.10	The Dual Simplex Algorithm	51

r

'n

co	N٦	ΓEΝ	νts

			Adding Variables and Constraints		54
	- 2	.12	Exercises		58
	2	.13	Notes		59
3	Integer F	rog	ramming and Graphs		60
			Introduction		60
			Basic Definitions and Elementary Properties	of Graphs	62
			Unimodularity		66
			Some Totally Unimodular LP's on Graphs		70
			An Algorithm for the Shortest Path Problem		74
•			Matching and Covering on Graphs		77
			An Algorithm for Maximum Matching		88
	-		Exercises		101
	3	.9	Notes		105
4	Enumera	tior	n Methods		108
	4	.1	Enumeration Trees		108
	4	.2	The Concept of Branch and Bound		111
	4	.3	Branch and Bound for the ILP		114
	4	.4	Efficient Branching and Bounding		118
	4	.5	Implicit Enumeration		122
	4	.6	Additional Tests for Implicit Enumeration		127
			Surrogate Constraints		130
	4		Extensions to the MILP		134
			Solving the MILP by Partitioning		135
	4	.10	Partitioning and Implicit Enumeration		143
	4	.11	Exercises		148
	4	.12	Notes		152
5	Cutting I	Plan	e Methods		154
	5		Introduction	لنم	155
	5		A Fundamental Cut	-	157
	5		Cuts in the Method of Integer Forms		158
	5		A Rudimentary Algorithm for the Method of		162
	5		A Finite Algorithm for the Method of Integer	Forms	162
			Cuts with Unit Coefficients		165
			Roundoff Problems and Integrality Tests		167
			Dual All-Integer Cuts		167
			A Finite Dual All-Integer Algorithm		170
			Primal All-Integer Cuts		175
			A Rudimentary Primal All-Integer Algorithm		176
			A Finite Primal All-Integer Algorithm		178
			A Summary of the Basic Algorithms		184
	5	.14	Composite Cuts in the Method of Integer For	rms	185

xii

	5.15	Cuts with Different Values of h	193
	5.16	Deep Cuts	197
	5.17	A Cutting Plane Algorithm for the MILP	200
	5.18	Intersection Cuts	203
	5.19	Exercises	207
	5.20	Notes	211
6	The Knapsa	ck Problem	214
	6.1	Problem Formulation	214
	6.2	Recursive Equations I	216
	6.3	Recursive Equations II	217
	6.4	Recursive Equations III	220
	6.5	A Periodic Property	223
	6.6	Modulo Arithmetic and Abelian Groups	224
	6.7	A Group Knapsack Problem	229
	6.8	Group Recursion I	230
	6.9	Group Recursion II	231
	6.10	A Relation between the Knapsack and Group Knapsack Problems	236
		Shortest Path Formulations of Knapsack Problems	239
	6.12	Transforming an ILP in Bounded Variables to a Knapsack Problem	
		in Bounded Variables	241
		Exercises	244
	6:14	Notes	248
7	Integer Prog	gramming Over Cones	250
	7.1	Problem Formulation and Basic Analysis	250
	7.2	Equivalent ILPC Representations	259
	7.3	Group Knapsack Representation of an ILPC	263
	7.4	Calculation of Smith Normal Form	267
	7.5	A Sufficient Condition for an ILPC to Solve an ILP	273
	7.6	Solving an ILP Using an ILPC and Branch and Bound 🦟	277
	7.7	Properties of Corner Polyhedra	283
	7.8	Exercises	292
	7.9	Notes	295
8	The Set Cov	vering and Partitioning Problems	298
	8.1	Introduction	298
	8.2	Some Applications	301
	8.3	Reductions	302
	8.4	Handling Binary Data	304
	8.5	Some Extreme Point Properties	305
	8.6	A Cutting Plane Algorithm for the Set Covering Problem	308
	8.7	An Enumeration Algorithm for the Set Covering Problem	312

xiii

CON	TE	NTS
-----	----	-----

	8.8	An Enumeration Algorithm for the Set Partitioning Problem	315
	8.9	Exercises	318
	8.10	Notes	321
9	Approximat	e Methods	324
	9.1	Introduction	324
	9.2	Finding Local Optima by Direct Search	326
	9.3	Finding Feasible Solutions	332
	9.4	Exercises	336
	9.5	Notes	337
10	Integer No	nlinear Programming	340
	10.1	Extensions of the Linear Techniques	340
	10.2	A Lexicographic Enumeration Algorithm	344
	10.3	Pseudo-Boolean Programming	348
	10.4	Bottleneck Integer Programming	351
	10.5	The Traveling Salesman Problem	354
	. 10.6	Exercises	361
	10.7	Notes	365
П	Computati	onal Experience	368
	11.1	Introduction	368
	11.2	Test Problems	370
	11.3	Computational Results. General Methods	376
	11.4	Computational Results. Special Purpose Methods	383
		Summary and Synthesis	387
		No.	
Bi	bliography		392
A	uthor Index		415
Sι	ıbject Index	-	421

.