24 8.0

Lecture Notes in Physics

Edited by J. Ehlers, München, K. Hepp, Zürich, R. Kippenhahn, München, H. A. Weidenmüller, Heidelberg, and J. Zittartz, Köln Managing Editor: W. Beiglböck, Heidelberg

67

W. Drechsler M. E. Mayer

Fiber Bundle Techniques in Gauge Theories

Lectures in Mathematical Physics at the University of Texas at Austin Edited by A. Böhm and J. D. Dollard

Fachbereich Mathematik Technische Hochschule Darmstadt Bibliothek

R 16 538 Inv.-Nr.

Springer-Verlag Berlin · Heidelberg · New York 1977

PART I

PART II

(Detailed tables of contents for each set of notes can be found on pages 5 and 146, respectively)

TABLE OF CONTENTS

PART I

	FACE ENTS			
ο.	INTR	INTRODUCTION		
1.	MANIFOLDS AND DIFFERENTIAL FORMS			
	1.0.	Introduction	12	
	1.1.	(Smooth) Differential Manifolds and their Tangent		
		Bundles	12	
	1.2.	Exterior Calculus and Differential forms	19	
	1.3.	Integration of Differential Forms. Stokes'		
		Theorem. De Rham Cohomology	29	
	1.4.	Vector-Valued and Lie-Algebra-Valued Differential		
		Forms	38	
2.	ELEC	TROMAGNETISM AND DIFFERENTIAL GEOMETRY	42	
	2.0.	Introduction	42	
	2.1.	Dual Forms and Maxwell's Equations	43	
	2.2.	The Potential 1-Form and Gauge Transformations of		
		Charged Particle Fields	50	
	2.3.	Hermann Weyl's Gauge Principle and the Yang-Mills		
		Generalization to Nonabelian Groups	55	
	2.4.	Cohomology of the Electromagnetic Field and		
		Magnetic Monopoles	64	
3.	PRIN	CIPAL FIBRATIONS AND ASSOCIATED VECTOR BUNDLES	67	
	3.0.	Introduction and Motivation	67	
	3.1.	Fibrations	70	
	3.2.	Sections	72	
	3.3.	Inverse Images (Pullbacks) and Fibered Products	73	
	3.4.	Definition of Fibrations by Means of Charts	74	
	3.5.	Principal Fibrations (Principal Fiber Bundles)	77	
	3.6.	Vector Bundles Associated to a Principal		
		Fibration	80	
4.	CONN	ECTIONS, CURVATURE, AND HOLONOMY	83	
	4.0.	Introduction	83	
	4.1.	Connections in Principal Fibrations (Principal		
		Connections)	87	
	4.2.	Covariant Differentiation. Curvature	90	

4.3. Connections in Associated Vector Bundles (Linear Connections)				
4.4. Parallel Translation				
4.5. Holonomy Groups and the Ambrose-Singer Theorem 98				
5. AN INTRODUCTION TO CHARACTERISTIC CLASSES101				
5.0. Introduction101				
5.1. Curvature and Chern Classes				
5.2. Pontryagin Classes108				
5.3. Integrality Theorems Homotopy Classes109				
6. GAUGE FIELDS AND CONNECTIONS115				
6.0. Introduction115				
6.1. Classical Gauge Fields and Principal Connections.116				
6.2. Solutions of the Classical "Free" Yang-Mills				
Equations 120				
6.3. Quantum Theory of Connections 125				
6.4. Feynman Path Integrals				
6.5. Remarks and Conjectures				
BIBLIOGRAPHY				
A. Books				
B. Articles				

PART II

Ċ

	C		
CONTE	NTS .	· · · · · · · · · · · · · · · · · · ·	46
I.	Intro	duction 14	47
II.	Gauge	Theories in a Lagrangian Formulation 1	53
	II.1	Spinor Electrodynamics 1	53
	II.2	G-Gauge Invariant Lagrangian Formalism 10	64

VIII

III.	Elemen	nts of Differential Geometry
	III.1	Manifolds, Fiber Bundles174
	III.2	Connexions in a Principal Fiber Bundle 188
	111.3	Bundles with Cartan Connexion
IV.	Gauge	Description of Strong Interactions
	Based	on a Fiber Bundle of Cartan Type214
	IV.1	The de Sitter Bundle over Space-Time215.
	IV.2	De Sitter Gauge Formulation of Strong
		Interactions224
	IV.3	U(1) 🔀 USp(2,2) Gauge Invariant Lagrange
		Theory
	Bibli	ography

-

.′

 \bigcirc

IХ