THEORY OF ECONOMETRICS

An Introductory Exposition of Econometric Methods

A. KOUTSOYIANNIS

Professor of Economics University of Waterloo, Ontario

SECOND EDITION

Enginsche Wirtschattsforschum

Foreword by C. F. CARTER

donden 13aningstohe 1977 3. Unge. 684 2. VB TU Darmstadt 51574010

Contents

Foreword	vii
Preface to the Second Edition	xiv
Preface to the First Edition	xv

PART ONE

CORRELATION THEORY THE SIMPLE LINEAR REGRESSION MODEL

አ 1	DEFINI	TION, SCOPE AND DIVISION OF ECONOMETRICS	3
	1.1	Definition and scope of econometrics	3
	1.2	Goals of econometrics	8
	1.3	Division of econometrics	9
\mathcal{K}_2	METHO	DOLOGY OF ECONOMETRIC RESEARCH	11
	2.1	Stage A. Specification of the model	12
	2.2	Stage B. Estimation of the model	16
	2.3	Stage C. Evaluation of the parameter estimates	25
	2.4	Stage D. Evaluation of the forecasting power of the model	28
	2.5	Desirable properties of an econometric model	29
<u>X</u> 3	CORRE	LATION THEORY	31
	3.1	General notes	31
	3.2	A measure of linear correlation: the correlation coefficient	32
	3.3	Numerical values of the correlation coefficient	37
	3.4	The rank correlation coefficient	40
	3.5	Partial correlation coefficients	42
	3.6	Limitations of the theory of linear correlation	43
<i>4</i>	THE SI	MPLE LINEAR REGRESSION MODEL	
~ \ `	THE OF	RDINARY LEAST SQUARES METHOD (OLS)	48
	4.1	The simple linear regression model	48
	4.2	Assumptions of the linear stochastic regression model	55
	4.3	The distribution of the dependent variable Y	58

4.4	The least squares criterion and the 'normal' equations of OLS	59
4.5	Estimation of a function whose intercept is zero	65
4.6	Estimation of elasticities from an estimated regression line	66
∽5 STAT	STICAL TESTS OF SIGNIFICANCE OF THE ESTIMATES	69
5.1	The test of the goodness of fit with r^2	69
5.2	Tests of significance of the parameter estimates	74
5.3	Confidence intervals of the parameters	91
5.4	Test of significance for the sample correlation coefficient	94
5.5	A note on the importance of the statistical tests of significance	97
↓6 PROPI	ERTIES OF THE LEAST SQUARES ESTIMATES	100
6.1	Desirable properties of estimators	100
6.2	Properties of the least squares estimators	109
× 7 MULT	PLE REGRESSION AND OTHER EXTENSIONS OF THE	
SIMPL	E LINEAR REGRESSION MODEL	117
7.1	Model with two explanatory variables	117
7.2	The general linear regression model	126
7.3	Partial correlation coefficients	132
7.4	Extension of the linear regression model to nonlinear	
	relationships	134
×8 REGR	ESSION AND ANALYSIS OF VARIANCE	140
8.1	The method of analysis of variance as a statistical method	141
8.2	Regression analysis and analysis of variance	151
8.3	Comparison of regression analysis and analysis of variance	153
8.4	Testing the overall significance of a regression	156
8.5	Testing the improvement of fit from additional regressors	158
8.6	Test of equality between coefficients from different samples	164
8.7	Test of stability of regression coefficients to sample size	168
8.8	Test of restrictions imposed on the relationship between two	
	or more parameters	170

PART TWO

ECONOMETRIC PROBLEMS

SECOND-ORDER TESTS OF THE ASSUMPTIONS OF THE LINEAR REGRESSION MODEL

THE ASSUMPTIONS OF RANDOMNESS, ZERO MEAN,
CONSTANT VARIANCE AND NORMALITY OF THE
DISTURBANCE VARIABLE u

х

•

Contents	xi		
9.1 The assumption of randomness of u	179		
9.2 The assumption of zero mean of u	179		
9.3 The assumption of homoscedasticity	181		
9.4 The assumption of normality of u	196		
≺ 10 AUTOCORRELATION	200		
10.1 The assumption of serial independence	200		
10.2 Sources of autocorrelation	203		
10.3 Plausibility of the assumption	204		
10.4 The first-order autoregressive scheme	205		
10.5 Consequences of autocorrelation	208		
10.6 Tests for autocorrelation	211		
10.7 Solutions for the case of autocorrelation	217		
10.8 Methods for estimating the autocorrelation parameters	221		
10.9 Summary and conclusions	225		
10.10 Prediction from autocorrelated functions	229		
X 11 MULTICOLLINEARITY	233		
11.1 The assumption of non-multicollinear regressors	233		
11.2 Plausibility of the assumption	234		
11.3 Consequences of multicollinearity	234		
11.4 Tests for detecting multicollinearity	238		
11.5 Solutions for multicollinearity	249		
11.6 Multiconnearity and prediction	252		
11.9 Mis manification in variables, manification hiss	252		
11.8 Mis-specification in variables, specification bias	253		
⊰ 12 ERRORS IN VARIABLES, TIME AS A VARIABLE,			
DUMMY VARIABLES, GROUPED DATA	258		
12.1 Errors in variables	258		
12.2 Time as a variable	279		
12.3 Dummy variables	281		
12.4 Estimation from grouped data	285		
13 LAGGED VARIABLES AND DISTRIBUTED-LAG MODELS	294		
13.1 Exogenous lagged variables	296		
13.2 Endogenous lagged variables	304		
13.3 Methods of estimation of lagged models	319		
PART THREE			

MODELS OF SIMULTANEOUS RELATIONSHIPS

14 SIMULTANEOUS-EQUATION MODELS

331

		14.1 14.2 14.3 14.4 14.5	Simultaneous dependence of economic variables Consequences of simultaneous relations Solution to the simultaneous-equation bias Some definitions Level of aggregation – number of equations – number of variables	331 332 335 336 342
ト	15	IDENT	IFICATION	346
		15.1 15.2 15.3 15.4 15.5 15.6 15.7	The problem of identification Implications of the identification state of a model Formal rules for identification Identifying restrictions Tests for identifying restrictions Identification and multicollinearity Identification and choice of econometric method	346 351 361 364 365 366
X	16	SIMUL	TANEOUS-EQUATION METHODS	369
		16.1 16.2 16.3 16.4	Reduced-form method or Indirect Least Squares (ILS) The method of Instrumental Variables (IV) Two-stage Least Squares (2SLS) 'k-class' Estimators	369 376 384 393
\times	17	MIXED THE M	ESTIMATION METHODS ETHOD OF PRINCIPAL COMPONENTS	396
		17.1 17.2 17.3 17.4 17.5 17.6	Mixed Estimation Methods: general notes Restricted Least Squares (RLS) Pooling cross-section and time-series data Durbin's Generalised Least Squares Theil and Goldberger's Mixed Linear Estimation The method of Principal Components	396 399 402 408 414 424
Х	18	MAXIM	IUM LIKELIHOOD METHODS	437
		18.1 18.2 18.3 18.4 18.5	Introduction to maximum likelihood estimation Maximum likelihood applied to a linear regression model Maximum likelihood and transformation of variables Limited Information Maximum Likelihood (LIML) Full Information Maximum Likelihood (FIML)	437 441 444 449 461
r	19	THREE	B-STAGE LEAST SQUARES	471
		19.1 19.2	Generalised Least Squares revisited (GLS) Three-stage Least Squares (3SLS)	471 474
	20	TESTII MODE	NG THE FORECASTING POWER OF AN ESTIMATED	479

Contents		xiii	
20.1	Forecasting with a single-equation linear regression model	479	
20.2	Forecasting with a multi-equation econometric model	484	
20.3	Testing the difference between a single prediction and	10.0	
20.4	realisation	488	
20.4	Evaluation of the forecasting power of a model	490	
21 CHOICE	COF ECONOMETRIC TECHNIQUE. MONTE CARLO		
STUDIE	ES	498	
21.1	General notes	498	
21.2	Ranking of econometric techniques according to the proper	ies	
	of the estimates of structural parameters	501	
21.3	Ranking of econometric techniques according to the		
	properties of the 'reduced-form' parameters	509	
21.4	General conclusions	510	
APPENDIX	I: Elements of Statistical Theory	513	
APPENDIX	II: Determinants and the solution of systems of equations	573	
APPENDIX	III: Exercises and Questions	587	
APPENDIX	IV: Statistical tables	657	
SELECT BI	BLIOGRAPHY	667	
INDEX		677	

.

--