Barry W. Boehm

Director, Software Research and Technology TRW, Inc.

SOFTWARE ENGINEERING ECONOMICS

Teo	chr AC	niscl ;HB	ne l ERI	Jni EIC	vera CH II	itäti VFC	Dan)Fili	msti ATt	adt K	
В	1	В	L	1	0	T	Н	<u>C</u>	K	
Inven	tar-	Nr.:	_	40	4-0	05-	19			
Sach	gəb	iete:								-
Stand	tort									_

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

ж Ж **XX** XX Ż CONTENTS

PREFACE

1

xix

PART I I	NTRODUCTION: MOTIVATION AND CONTEXT	1
Chapter 1	Case Study 1: <i>Scientific American</i> Subscription Processing	3
1.1 1.2 1.3 1.4	The Old System3The Programming Solution: Top-Down Stepwise Refinement4The Programming Solution: Results5The Economic-Programming Approach6	
	• •	

- 1.5 Results of the Economic–Programming Approach 7
- 1.6 General Discussion 8
- 1.7 Questions 8

Chapter 2 Case Study 2: An Urban School Attendance System

10

14

29

- $2.1 \Rightarrow$ Programming Aspects 10.
- 2.2 Economic Aspects 10
- 2.3 Human Relations Aspects 11
- 2.4 Lessons Learned 11
- 2.5 General Discussion 12
- 2.6 Questions 13

Chapter 3 The Goals of Software Engineering

- 3.1 Introduction 14
- 3.2 Software Engineering: A Definition 16
- 3.3 Software Trends: Cost 17
- 3.4 Software Trends: Social Impact 18
- 3.5 The Plurality of Goals 20
- 3.6 An Example: Weinberg's Experiment 20
- 3.7 The Plurality of Software Engineering Means 21
- 3.8 The Software Engineering Goal Structure 23
- 3.9 The GOALS Approach to Software Engineering 23
- 3.10 Questions 26

PART II THE SOFTWARE LIFE-CYCLE: A QUANTITATIVE MODEL

Chapter 4 The Software Life-Cycle: Phases and Activities 35

- 4.1 Introduction 35
 4.2 The Waterfall Model 35
 4.3 Economic Rationale for the Waterfall Model
 4.4 Refinements of the Waterfall Model 41
 4.5 Detailed Life Cool Difference 44
- 4.5 Detailed Life-Cycle Phase Definitions 46

- 4.6 Detailed Phase/Activity Definitions 46
- 4.7 The Software Work Breakdown Structure (WBS) 47
- 4.8 Software Maintenance 54
- 4.9 Questions 55

Chapter 5 The Basic COCOMO Model

- 5.1 Introduction 57
- 5.2 Definitions and Assumptions 58
- 5.3 Development Effort and Schedule 61
- 5.4 Phase Distribution 64
- 5.5 Nominal Project Profiles 65
- 5.6 The Rayleigh Distribution 67
- 5.7 Interpolation 69
- 5.8 Basic Software Maintenance Effort Estimation 71
- 5.9 Questions 71

Chapter 6 The Basic COCOMO Model: Development Modes 74

6.1 Introduction 74

:

- 6.2 Basic Effort and Schedule Equations 75
- 6.3 The Three COCOMO Modes of Software Development 78
- 6.4 Discussion of the Basic COCOMO Effort and Schedule Equations 83
- 6.5 Phase Distribution of Effort and Schedule 89
- 6.6 Questions 94

Chapter 7 The Basic COCOMO Model: Activity Distribution 97

- 7.1 Introduction 97
- 7.2 Activity Distribution by Phase 98
- 7.3 Basic COCOMO Case Study: The Hunt National Bank EFT System 103
- 7.4 Deriving Basic Project Organization Charts 104
- 7.5 Discussion of Basic COCOMO Phase and Activity Distributions 110
- 7.6 Limitations of Basic COCOMO 111
- 7.7 Questions 111

Chapter 8 The Intermediate COCOMO Model: Product Level Estimates

- 8.1 Introduction 114
- 8.2 Intermediate COCOMO: Software Development Effort Estimation 117
- 8.3 A Pricing Example: Microprocessor Communications Software 125
- 8.4 A Management Example: Reduced Cost-to-Complete 127
- 8.5 Adjusted Estimate of Annual Maintenance Effort 129
- 8.6 Example: Microprocessor Communications Software Maintenance 130
- 8.7 Interpolation and Extrapolation 132
- 8.8 Estimating the Effects of Adapting Existing Software 133
- 8.9 Discussion of the Intermediate COCOMO Effort Equations 138
- 8.10 Questions 141

Chapter 9 Intermediate COCOMO: Component Level Estimation

145

114

- 9.1 Introduction 145
- 9.2 The Component Level Estimating Form (CLEF) 146
- 9.3 Using the CLEF with Adapted Software 151
- 9.4 Transaction Processing System (TPS) Example: Basic Development Estimate 153
- 9.5 TPS Component Level Maintenance Estimate and Phase Distribution 156
- 9.6 Questions 160

PART III FUNDAMENTALS OF SOFTWARE ENGINEERING ECONOMICS 165

PART IIIA COST-EFFECTIVENESS ANALYSIS 169

Chapter 10 Performance Models and Cost-Effectiveness Models 170

- 10.1 Performance Models 170
- 10.2 Optimal Performance 173
- 10.3 Sensitivity Analysis 176
- 10.4 Cost-Effectiveness Models 178
- 10.5 Questions 181

Chapter 11 Production Functions: Economies of Scale

11.1	Example 187
11.2	General Discussion: Definitions 188
11.3	Discrete Production Functions 189
11.4	Basic Production Functions for Software Development 189
11.5	Economies and Diseconomies of Scale 189
11.6	Diseconomies of Scale on Large Software Projects 190
11.7	The Best Way to Combat Diseconomies of Scale 191
11.8	Questions 195

Chapter 12 Choosing Among Alternatives: Decision Criteria

197

207

- 12.1 Example: Minimum Available Budget 197
- 12.2 Minimum Performance Requirement 198
- 12.3 Maximum Effectiveness/Cost Ratio 199
- 12.4 Maximum Effectiveness-Cost Difference 199
- 12.5 Composite Options 201
- 12.6 General Discussion 202
- 12.7 Questions 202

PART IIIB MULTIPLE-GOAL DECISION ANALYSIS 205

Chapter 13 Net Value and Marginal Analysis

13.1	Example 207	
13.2	General Discussion: Marginal Analysis 208	
13.3	Illustration 210	
13.4	Some Caveats in Dealing with Net Value and Profit	212
13.5	Value of Information Processing Products 212	
13.6	Questions 213	

Chapter 14 Present versus Future Expenditure and Income 215

- 14.1 Example: An Oversimplified Cost Analysis 215
- 14.2 Interest Calculations 216

- 14.3 Present Value Calculations 216
- 14.4 Present Value of a Series of Cash Flows 217
- 14.5 Summary of Rental versus Purchase Analysis 218
- 14.6 General Discussion: Summary of Present Value Concepts and Formulas 219
- 14.7 Present Value Characteristics 220
- 14.8 Sensitivity to Interest Rate or Discount Rate 220
- 14.9 Applications to Software Engineering 221
- 14.10 Questions 221

Chapter 15 Figures of Merit

- 15.1 Example: Software Package Selection 223
- 15.2 Net Value Analysis 224
- 15.3 Figure of Merit Analysis 225
- 15.4 General Discussion: A Weighted Sum Analysis for Hardware and Software Selection: A Case Study 227
- 15.5 Case Study: Activity Description 228
- 15.6 Case Study: Problems with the Evaluation Function 234
- 15.7 Case Study: Problems with Weights and Ratings 235
- 15.8 Case Study: Summary 236
- 15.9 The Delivered System Capability (DSC) Figure of Merit 236
- 15.10 Properties of the DSC Figure of Merit 237
- 15.11 The TPS Example Revisited 238
- 15.12 Comparison of Weighted-Sum and DSC Figures of Merit 239
- 15.13 Questions 241

Chapter 16 Goals as Constraints

243

223

- 16.1 Example: TPS Option A Failure Modes 243
- 16.2 System Reliability and Availability 243
- 16.3 Figure of Merit Evaluation 244
- 16.4 Expressing Goals as Constraints 245
- 16.5 Goals as Constraints: Feasible Sets and Cost-Value Contours 246
- 16.6 General Discussion: Decision Problems with Constraints 248
- 16.7 Software Engineering Applications 250
- 16.8 Mathematical Optimization Techniques 250
- 16.9 Capabilities and Limitations of Mathematical Optimization Techniques 255
- 16.10 Questions 256

xii CONTENTS

Chapter 17 Systems Analysis and Constrained Optimization

- 17.1 Example 258
- 17.2 General Discussion 262
- 17.3 Questions 263

Chapter 18 Coping with Unreconcilable and Unquantifiable Goals

18.1	Example: TPS Option B: Special-Purpose Operating System	
	Development 266	
18.2	In-House versus Vendor Development Considerations 266	
18.3	Presentation Methods 267	
18.4	General Discussion: Unquantifiable Criteria 269	
18.5	Presentation Techniques for Unquantifiable Criteria 270	
18.6	Presentation Techniques for Mixed Quantifiable and Unquantifiable	
	Criteria 272	
18.7	Some Cautions in Presenting and Interpreting Multivariate Data	275
18.8	Questions 276	

PART IIICDEALING WITH UNCERTAINTIES, RISK, AND
THE VALUE OF INFORMATION278

Chapter 19 Coping with Uncertainties: Risk Analysis

- 19.1 Example: Operating System Development Options 279
- 19.2 Decision Rules for Complete Uncertainty 280
- 19.3 Subjective Probabilities 282
- 19.4 General Discussion: Decision Rules Under Complete Uncertainty 283
- 19.5 The Value of Information 283
- 19.6 Subjective Probabilities 284
- 19.7 Utility Functions 284
- 19.8 Software Engineering Implications 285
- 19.9 Questions 286

265

Chapter 20 Statistical Decision Theory: The Value of Information

- 20.1 Example: The Prototype Approach 289
- 20.2 Expected Value of Perfect Information 290
- 20.3 Working with Imperfect Information 290
- 20.4 Example 291
- 20.5 Bayes' Formula 291
- 20.6 Maximizing the Net Expected Value of the Prototype 293
- 20.7 General Discussion: Expected Value of Perfect Information 294
- 20.8 Expected Value of Imperfect Information 295
- 20.9 The Value-of-Information Procedure 296
- 20.10 Use of the Value-of-Information Procedure in Software Engineering 297
- 20.11 Value-of-Information Decision Guidelines 298
- 20.12 Pitfalls Avoided by Using the Value-of-Information Approach 299
- 20.13 Value of Information: Wrap-Up 300
- 20.14 Questions 300

PART IV THE ART OF SOFTWARE COST ESTIMATION 305

PART IVA SOFTWARE COST ESTIMATION METHODS AND PROCEDURES

Chapter 21 Seven Basic Steps in Software Cost Estimation 309

- 21.1 Step 1: Establish Objectives 310
- 21.2 Step 2: Plan for Required Data and Resources 313
- 21.3 Step 3: Pin Down Software Requirements 315
- 21.4 Step 4: Work Out as Much Detail as Feasible 316
- 21.5 Step 5: Use Several Independent Techniques and Sources 323
- 21.6 Step 6: Compare and Iterate Estimates 323
- 21.7 Step 7: Followup 326
- 21.8 Questions 328

Chapter 22 Alternative Software Cost Estimation Methods 329

- 22.1 Algorithmic Models 330
- 22.2 Expert Judgment 333

xiv CONTENTS

22.3	Estimation by Analogy	336	
22.4	Parkinsonian Estimation	336	
22.5	Price-to-Win Estimating	337	
22.6	Top-Down Estimating	337	
22.7	Bottom-Up Estimating	338	
	a <u>a</u> . a		

- 22.8 Summary Comparison of Methods 341
- 22.9 Questions 342

PART IVB THE DETAILED COCOMO MODEL 344

Chapter 23 Detailed COCOMO: Summary and Operational Description 347

- 23.1 Introduction 347
- 23.2 The Software Hierarchy Estimating Form (SHEF) 348
- 23.3 The Software Hierarchy Estimating Form (SHEF) Procedures 351
- 23.4 Detailed COCOMO Example: Student Job Information System 355
- 23.5 Schedule Adjustment Calculations 359
- 23.6 Discussion 361
- 23.7 Questions 367

Chapter 24 Detailed COCOMO Cost Drivers: Product Attributes

- 24.1 RELY: Required Software Reliability 372
- 24.2 DATA: Data Base Size 386
- 24.3 CPLX: Software Product Complexity 390
- 24.4 Questions 395
- 24.5 Topics of Research 397

Chapter 25 Detailed COCOMO Cost Drivers: Computer Attributes

- 25.1 TIME: Execution Time Constraint 400
- 25.2 STOR: Main Storage Constraint 410
- 25.3 VIRT: Virtual Machine Volatility 413
- 25.4 TURN: Computer Turnaround Time 415
- 25.5 Questions 421
- 25.6 Topics for Further Research 424

371

Chapter 26 Detailed COCOMO Cost Drivers: Personnel Attributes

26.1	ACAP: Analyst Capability 427
26.2	AEXP: Applications Experience 431
26.3	PCAP: Programmer Capability 435
26.4	VEXP: Virtual Machine Experience 439
26.5	LEXP: Programming Language Experience 442
26.6	General Discussion of Personnel Attributes 444
26.7	Questions 448
26.8	Topics for Further Research 449
	-

Chapter 27 Detailed COCOMO Cost Drivers: Project Attributes

- 27.1 MODP: Modern Programming Practices 451
- 27.2 TOOL: Use of Software Tools 459
- 27.3 SCED: Schedule Constraint 466
- 27.4 Questions 472
- 27.5 Topics for Further Research 473

Chapter 28 Factors Not Included in COCOMO 475

- 28.1 Type of Application 476
- 28.2 Language Level 477
- 28.3 Other Size Measures: Complexity, Entities, Specifications 479
- 28.4 Requirements Volatility 484
- 28.5 Personnel Continuity 486
- 28.6 Management Quality 486
- 28.7 Customer Interface Quality 488
- 28.8 Amount of Documentation 488
- 28.9 Hardware Configuration 489
- 28.10 Security/Privacy Restrictions 489
- 28.11 Topics for Further Research 490

Chapter 29 COCOMO Evaluation

- 29.1 Introduction 492
- 29.2 The COCOMO Project Data Base 494
- 29.3 COCOMO Estimates versus Actuals: Development Effort 495

451

492

- 29.4 COCOMO Estimates versus Actuals: Development Schedule 495
- 29.5 COCOMO Estimates versus Actuals: Phase Distribution 504
- 29.6 COCOMO Estimates versus Actuals: Activity Distribution 507
- 29.7 Other Software Cost-Estimation Models 510
- 29.8 COCOMO Evaluation with Respect to Model Criteria 520
- 29.9 Tailoring COCOMO to a Particular Installation 524
- 29.10 Topics for Further Research 530

PART IVC SOFTWARE COST ESTIMATION AND LIFE-CYCLE MANAGEMENT

Chapter 30 Software Maintenance Cost Estimation 533

30.1	Introduction 533
30.2	The COCOMO Software Maintenance Model 534
30.3	Comparison with Project Results 539
30.4	Other Software Maintenance Cost-Estimation Models 540
30.5	Software Maintenance Phenomenology 545
30.6	Software Maintenance Project Data 550
30.7	Questions 553
30.8	Topics for Further Research 554

Chapter 31 Software Life-Cycle Cost Estimation

31.1	Introduction 556
31.2	Software Conversion Cost-Estimating Relationships 557
31.3	Software Conversion Estimates versus Actuals 561
31.4	Software Installation and Training Cost Estimation 565
31.5	Computer Cost Estimation for Software Development 566
31.6	Amount of Software Documentation 571
31.7	Other Software-Related Life-Cycle Costs 576
31.8	An Example Software Life-Cycle Cost-Benefit Analysis 577
31.9	Topics for Further Research 590

Chapter 32 Software Project Planning and Control 591

32.1 Introduction 591
32.2 A Software Project Planning and Control Framework 594

532

- 32.3 Project Scheduling Techniques 597
- 32.4 Detailed Software Planning and Control: The Unit Development Folder 607
- 32.5 Monitoring Project Expenditures versus Progress: The Earned Value System 612
- 32.6 Software Project Planning and Control Example 618
- 32.7 Building a Software Cost Data Base 637
- 32.8 Software Planning and Control: Summary Discussion 638
- 32.9 Questions 638

Chapter 33 Improving Software Productivity

641

- 33.1 Introduction 641
- 33.2 Non-Programming Options: Software Packages 647
- 33.3 Non-Programming Options: Program Generators 654
- 33.4 Software Productivity Controllables: Product Attributes 658
- 33.5 Software Productivity Controllables: Computer Attributes 662
- 33.6 Software Productivity Controllables: Personnel Attributes 666
- 33.7 Software Productivity Controllables: Project Attributes 676
- 33.8 Establishing a Software Productivity Improvement Program 682
- 33.9 Conclusions 688

INDEX