R. Wiesendanger H.-J. Güntherodt (Eds.)

Scanning Tunneling Microscopy III

Theory of STM and Related Scanning Probe Methods

Second Edition With 212 Figures

> Physila Contro Dictioninek Fachboreich 5 Technische Universität Darmstadt Hochechulstraße 4 D-64289 Darmstadt

> > pb 1300

Contents

-		
1.	IntroductionBy R. Wiesendanger and HJ. Güntherodt.1.1 Theoretical Concepts for Scanning Tunneling Microscopy.1.2 Theoretical Concepts for Force MicroscopyReferences.References.	23
2.	STM Imaging of Single-Atom Adsorbates on Metals	
	By <i>N.D. Lang</i> (With 15 Figures)	. 7
	2.1 Tunneling Hamiltonian Approach	
	2.2 Adsorbates on Metal Surfaces	
	2.2.1 Topography	
	2.2.2 Spectroscopy	
	2.2.3 Voltage Dependence of Images – Apparent Size	
	of an Adatom	. 15
	2.3 Close Approach of the Tip: The Strong-Coupling Regime .	. 17
	2.3.1 From Tunneling to Point Contact	. 17
	2.3.2 Measuring the Tunneling Barrier	
	References	. 21
3	The Scattering Theoretical Approach	
5.	to the Scanning Tunneling Microscope	
	By G. Doyen (With 16 Figures)	. 23
	3.1 The Theoretical Formalism	
	3.1.1 The Limits of Perturbation Theory	
	3.1.2 Tunneling as a Scattering Process	
	3.1.3 Current Density	
	and Generalized Ehrenfest Theorem	. 29
	3.1.4 Local Charge Density at the Fermi Level	
	and Tunnel Current.	. 31
	3.1.5 Resonance Tunneling	
	3.2 Tunneling Through Thick Organic Layers	. 35
	3.2.1 The Experimental Situation	. 35
	3.2.2 A Simple Soluble Model	. 36
	3.3 Scanning Tunneling Microscopy at Metal Surface	
	3.3.1 A Method Based on the Korringa-Kohn-Rostocker	
	(KKR) Band Theory	. 39

	3.3.2 Including the Atomic Structure of the Tip:	
	Model Hamiltonian Approach	39
	3.3.3 Close Packed Metal Surface	41
	3.3.4 Open Metal Surfaces	46
	3.3.5 Imaging Adsorbed Alkali Atoms: K/Cu(110)	48
	3.4 Summary and Conclusions	48
	References.	49
4.	Spectroscopic Information in Scanning Tunneling Microscopy	
	By C. Noguera (With 8 Figures).	51
	4.1 Green's Function Method	52
	4.1.1 Matching at a Single Surface	52
	4.1.2 Matching at Two Surfaces	56
	4.2 Derivation of the Transfer Hamiltonian Approach	57
	4.2.1 The Transfer Hamiltonian Approach.	58
	4.2.2 Tersoff and Hamann's Theory.	58
	4.2.3 New Derivation of the Transfer Hamiltonian	
	Approach.	59
	4.2.4 Validity of the Transfer Hamiltonian Approach	61
	4.3 One-Dimensional Models	62
	4.3.1 Free Electron Model with a Square Barrier.	62
	4.3.2 One-Dimensional Array of Square Well Potentials	63
	4.3.3 The Question of the Surface States	64
	4.3.4 Resonant States in the Barrier.	65
	4.4 Three-Dimensional Models	68
	4.4.1 Formalism for a Spherical Tip	69
	4.4.2 Application to an Adsorbate on a Surface.	72
	4.5 Conclusion	74
	References.	75
		15
5	The Role of Tip Atomic and Electronic Structure	
5.	in Scanning Tunneling Microscopy and Spectroscopy	
	By M. Tsukada, K. Kobayashi, N. Isshiki, S. Watanabe,	
	H. Kageshima, and T. Schimizu (With 20 Figures)	77
	5.1 Background	77
	5.2 Formalism of Theoretical Simulation of STM/STS	79
	5.3 Simulation of STM/STS of the Graphite Surface	81
	5.3.1 Normal Images	81
	5.3.2 Abnormal Images	82
	5.3.3 Effect of the Atom Kind of the Tip	62
	and the Tunnel Current Distribution.	84
	5.4 STM/STS of Si(100) Reconstructed Surfaces	
		85
	5.5 The Negative-Differential Resistance	
	Observed on the Si(111) $\sqrt{3} \times \sqrt{3}$ -B Surface	91

	5.6 The STM Image of the Si(111) $\sqrt{3} \times \sqrt{3}$ -Ag Surface	
	and the Effect of the Tip	95
	5.7 Light Emission from a Scanning Tunneling Microscope	98
	5.8 Summary and Future Problems	101
	Note Added in Proof	102
	References.	102
6.	Bohm Trajectories and the Tunneling Time Problem	
	By C.R. Leavens and G.C. Aers (With 21 Figures)	105
	6.1 Background	105
	6.1.1 Motivation	105
	6.1.2 Defining the Problem	106
	6.2 A Brief Discussion of Previous Approaches.	107
	6.3 Bohm's Trajectory Interpretation of Quantum Mechanics.	110
	6.3.1 A Brief Introduction	110
	6.3.2 Transmission and Reflection Times	
	Within Bohm's Interpretation	111
	6.4 Application to Simple Systems	114
	6.4.1 Some Numerical Details	114
	6.4.2 Reflection Times for an Infinite Barrier	115
	6.4.3 Transmission and Reflection Times	
	for Rectangular Barriers	116
	6.4.4 Coherent Two-Component Incident Wave Packet	121
	6.4.5 Transmission Times for Time-Modulated Barriers	123
	6.4.6 Transmission Times for Symmetric Double	
	Rectangular Barriers.	129
	6.5 Discussion	132
	6.5.1 'Measurement' of Particle Momentum	132
	6.5.2 'Measurement' of Mean Transmission	
	and Reflection Times	136
	6.5.3 Concluding Remarks	137
	References.	138
	Additional References with Titles	140
7.	Unified Perturbation Theory for STM and SFM	
	By C.J. Chen (With 16 Figures)	141
	7.1 Background	141
	7.1.1 A Brief Summary of Experimental Facts.	141
	7.1.2 The Bardeen Approach for Tunneling Phenomena	143
	7.1.3 Perturbation Approach for STM and SFM	145
	7.2 The Modified Bardeen Approach	147
•	7.2.1 General Derivation	147
	7.2.2 The Square-Barrier Problem	151
	7.2.3 The Hydrogen Molecular Ion	152
	7.2.4 The Tunneling Time	157

	7.2.5 Asymptotic Accuracy	
	of the Bardeen Tunneling Theory	158
	7.2.6 Tunneling Conductance	
	and Attractive Atomic Force.	158
	7.3 Explicit Expressions for Tunneling Matrix Elements	159
	7.4 Theoretical STM Images	162
	7.4.1 The Method of Leading Bloch Waves	163
	7.4.2 The Method of Independent Atomic Orbitals.	165
	7.5 Effect of Atomic Forces in STM Imaging.	169
	7.5.1 Stability of STM at Short Distances	169
	7.5.2 Effect of Force in Tunneling Barrier Measurements	170
	7.6 In-Situ Characterization of Tip Electronic Structure	172
	7.7 Summary	174
	7.8 Appendix: Modified Bardeen Integral	171
	for the Hydrogen Molecular Ion	174
	References.	177
		177
8.	Theory of Tip-Sample Interactions	
	By S. Ciraci (With 10 Figures).	179
	8.1 Tip–Sample Interaction.	179
	8.2 Long-Range (Van der Waals) Forces.	183
	8.3 Interaction Energy: Adhesion	185
	8.4 Short-Range Forces.	186
	8.5 Deformations.	188
	8.6 Atom Transfer	190
	8.7 Tip-Induced Modifications of Electronic Structure.	192
	8.8 Calculation of Current at Small Separation	194
	8.9 Constriction Effect.	197
	8.10 Transition from Tunneling to Ballistic Transport	198
	8.11 Tip Force and Conductivity	201
	8.12 Summary	201
	References.	204
		205
9.	Consequences of Tip-Sample Interactions	
	By U. Landman and W.D. Luedtke (With 29 Figures)	207
	9.1 Methodology	210
	9.2 Case Studies	212
	9.2.1 Clean Nickel Tip/Gold Surface	214
	9.2.2 Gold-Covered Nickel Tip/Gold Surface	223
	9.2.3 Clean Gold Tip/Nickel Surface	224
	9.2.4 Nickel Tip/Hexadecane Film/Gold Surface	230
	9.2.5 CaF_2 Tip/CaF ₂ Surface.	237
	9.2.6 Silicon Tip/Silicon Surface	241
	References.	246
		240

10.	Theory of Co	ontact Force Microscopy on Elastic Media	
	By G. Overne	<i>ey</i> (With 13 Figures)	251
	10.1 Descrip	tion of a Scanning Force Microscope	251
	10.2 Elastic	Properties of Surfaces	252
	10.2.1	Continuum Elasticity Theory	
	f	or Layered Materials.	253
	10.2.2	Atomic Theory	256
		tion Between SFM and Elastic Media	259
	10.3.1 I	Local Flexural Rigidity	263
	10.4 Conclus	sions and Outlook	267
	References.		267
11.	Theory of At	tomic-Scale Friction	
	By D. Tomár	nek (With 17 Figures).	269
	11.1 Microso	copic Origins of Friction.	269
	11.2 Ideal F	riction Machines	272
		Sliding Friction	272
		Rolling Friction	277
	11.3 Predict	ive Calculations of the Friction Force	279
	11.3.1	Fip–Substrate Interactions in Realistic Systems:	
	1	Pd on Graphite	279
	11.3.2	Atomic-Scale Friction in Realistic Systems:	
		Pd on Graphite	283
	11.4 Limits	of Non-destructive Tip–Substrate Interactions	
		ning Force Microscopy	287
	References.	· · · · · · · · · · · · · · · · · · ·	291
12.		on-contact Force Microscopy	
	By U. Hartn	nann (With 34 Figures)	293
	12.1 Method	lical Outline	293
	12.2 Van de	r Waals Forces	294
	12.2.1	General Description of the Phenomenon	294
	12.2.2	The Two-Slab Problem: Separation of Geometrical	
		and Material Properties	297
	12.2.3	Transition to Renormalized Molecular Interactions	302
	12.2.4	The Effect of Probe Geometry	305
	12.2.5	Dielectric Contributions: The Hamaker Constants.	312
	12.2.6	On the Observability of Van der Waals Forces	323
	12.2.7	The Effect of Adsorbed Surface Layers	326
	12.2.8	Size, Shape, and Surface Effects:	
		Limitations of the Theory	328
	12.2.9	Application of Van der Waals Forces to	
		Molecular-Scale Analysis and Surface Manipulation	332
	12.2.10	Some Concluding Remarks	335

 12.3 Ionic Forces	336 336 340 345 351 358
References	359
13. Recent Developments	
By N. D. Lang, G. Doyen, D. Drakova, M. Tsukada,	
N. Kobayashi, K. Hirose, C.R. Leavens, U. Hartmann,	
and E. Siebel (With 13 Figures)	361
13.1 STM Imaging of Single-Atom Adsorbates on Metals	361
13.2 The Scattering Theoretical Approach	
to Scanning Tunneling Microscopy	
and Scanning Tunneling Spectroscopy	362
13.2.1 Scanning Tunneling Spectroscopy	362
13.2.2 STS on Metal Surfaces	363
13.2.3 Local Electron Relaxation Effects in STM -	
A Key to Understanding Large Corrugation	
Amplitudes	366
13.2.4 STM and SFM – The Role of the Tip Atom	368
13.2.5 STM Imaging of Semiconductor Surfaces	370
13.2.6 Summary and Conclusions	371
13.3 Theory of Atom Transfer Between	
the Tip and the Surface	372
13.4 Bohm Trajectories and Tunneling-Time Problem	375
13.5 Non-Contact Force Microscopy	376
References	384
Subject Index	387
Subject Index	507
Contents of Scanning Tunneling Microscopy I	
(Springer Series in Surface Sciences, Vol. 20)	393
Contents of Scanning Tunneling Microscopy II	
(Springer Series in Surface Sciences, Vol. 28)	397