

Hydraulics for Civil Engineers

Peter Wynn

formerly senior lecturer in civil engineering, Anglia Ruskin University

Contents	Preface List of symbols Pressure in liquids: its effects and measurement		
01			
	 1.1. Introduction 1.2. Density and pressure within a liquid 1.3. Measurement of pressure 1.4. Forces on immersed surfaces 1.5. Buoyancy and flotation References 	1 1 3 5 12 17	
02	 Conservation equations applied to flow of liquid in pipes 2.1. Introduction 2.2. Continuity equation 2.3. Momentum equation 2.4. Bernoulli (or Energy) equation Reference 	19 19 20 21 26 34	
03	Real flow in pipes3.1.Introduction3.2.Viscosity of fluids3.3.Laminar and turbulent flow3.4.Modification of Bernoulli equation for head loss due to friction3.5.Boundary layers in turbulent flow3.6.Derivation of λ values and use in design chartsReferencesFurther reading	35 35 37 39 44 44 50 51	
04	Turbines and pumps4.1.Introduction4.2.Turbines4.3.Pumps4.4.Cavitation in turbines and pumpsReferencesFurther reading	53 53 59 63 63 64	
05	Steady uniform flow in open channels5.1.Introduction5.2.Sustainable design of river channels5.3.Basic definitions5.4.Discharge equations5.5.Velocity variation over channel cross-section5.6.Most economically efficient section5.7.Specific energyReferencesFurther reading	65 65 67 70 74 74 74 76 81 82	
06	Open channel flow with varying conditions6.1.6.2.Examples of flow changes6.3.Flow rate measurement based on changes in section6.4.Gradually varied flowReferences	83 83 87 96 99 103	

,

07	 7.1. 7.2.	Introduction Return period approach Hydrograph approach	105 105 105 111 116
08	 8.1. 8.2. 8.3. 8.4. 8.5. Referen	ogy of surface water drainage Introduction Short duration rainfall intensity Hydraulic design of surface water sewers Sustainable drainage systems Difference between greenfield and development runoff ices reading	119 119 121 128 131 133 133
09	 9.1. 9.2. 9.3. 9.4. 9.5. 9.6. Referen	I hydraulics Introduction Sea level records Mean sea level Astronomical tides Meteorological effects, including surges Waves ces reading	135 135 136 136 136 138 141 152 152
10	 10.1. 10.2. 10.3. 10.4. 10.5. 10.6. Referen	sional analysis Introduction Dimensions Dimensional equations Dimensional analysis Similarity Use of dimensionless numbers in model scaling ices reading	153 153 154 156 159 160 164 164
11		mensional ideal flow	165
	 11.1. 11.2. 11.3. 11.4. 11.5. 11.6. 11.7.	Introduction Theoretical basis Uniform straight line flow Sources Sinks Free vortex Forced vortex Combination of flow	165 165 176 177 179 183 183 185 188
	Index		189