HYDRODYNAMIC STABILITY

P. G. DRAZIN

Reader in Mathematics, University of Bristol

W. H. REID

Professor of Applied Mathematics, University of Chicago

H

Technische Hochschule Danmsraur Fachbereich Mechanik Bibliothek Im.-Nr.-BM 96/81

CAMBRIDGE UNIVERSITY PRESS

CAMBRIDGE LONDON NEW YORK NEW ROCHELLE MELBOURNE SYDNEY

ראי CONTENTS

Pre	face	2

.

page xiii

1 INTRODUCTION

1 Introduction	1
2 Mechanisms of instability	4
3 Fundamental concepts of hydrodynamic stability	8
4 Kelvin–Helmholtz instability	14
5 Break-up of a liquid jet in air	22
Problems for chapter 1	27

2 THERMAL INSTABILITY

6	Introduction	32
7	The equations of motion	34
	The exact equations, 34; The Boussinesq equations, 35	
8	The stability problem	37
	The linearized equations, 37; The boundary condi-	
	tions, 40; Normal modes, 42	
9	General stability characteristics	44
	Exchange of stabilities, 44; A variational principle, 45	
Í0	Particular stability characteristics	50
·	Free-free boundaries, 50; Rigid-rigid boundaries,	
	51; free-rigid boundaries, 52	
11	The cells	52
12	Experimental results	59
13	Some applications	62
Pro	blems for chapter 2	63

CONTENTS

3 CENTRIFUGAL INSTABILITY

14	Introduction	69
15	Instability of an inviscid fluid	71
	Three-dimensional disturbances, 73; Axisymmetric	
	disturbances, 77; Two-dimensional disturbances, 80	
16	Instability of Couette flow of an inviscid fluid	82
17	The Taylor problem	88
	Axisymmetric disturbances, 90; Two-dimensional	
	disturbances, 103; Three-dimensional disturbances,	
40	104; Some experimental results, 104	100
18	The Dean problem	108
	The Dean problem, 108; The Taylor-Dean prob-	
4.0	lem, 113	11/
19	The Gortler problem	116
Pro	blems for chapter 3	121
	4 PARALLEL SHEAR FLOWS	
20	Introduction	124
	The inviscid theory	
21	The governing equations	126
22	General criteria for instability	131
23	Flows with piecewise-linear velocity profiles	144
	Unbounded vortex sheet, 145; Unbounded shear	
	layer, 146; Bounded shear layer, 147	
24	The initial-value problem	147
	The viscous theory	
25	The governing equations	153
26	The eigenvalue spectrum for small Reynolds numbers	158
	A perturbation expansion, 159; Sufficient conditions	
	for stability, 161	
27	Heuristic methods of approximation	164
	The reduced equation and the inviscid approxima-	
	tions, 165; The boundary-layer approximation near	
	a rigid wall, 167; The WKBJ approximations,	
	167; The local turning-point approximations,	

viii

	171; The truncated equation and Tollmien's	
	improved viscous approximations, 175; The viscous	
	correction to the singular inviscid solution, 177	
28	Approximations to the eigenvalue relation	180
	Symmetrical flows in a channel, 181; Flows of the	
	boundary-layer type, 183; The boundary-layer	
	approximation to $\phi_3(z)$, 184; The WKBJ approxi-	
	mation to $\phi_3(z)$, 185; The local turning-point	
	approximation to $\phi_3(z)$, 188; Tollmien's improved	
	approximation to $\phi_3(z)$, 191	
29	The long-wave approximation for unbounded flows	196
30	Numerical methods of solution	202
	Expansions in orthogonal functions, 203; Finite-	
	difference methods, 206; Initial-value methods	
	(shooting), 207	
31	Stability characteristics of various basic flows	211
	Plane Couette flow, 212; Poiseuille flow in a circular	
	pipe, 216; Plane Poiseuille flow, 221; Combined	
	plane Couette and plane Poiseuille flow, 223; The	
	Blasius boundary-layer profile, 224; The asymptotic	
	suction boundary-layer profile, 227; Boundary	
	layers at separation, 229; The Falkner-Skan	
	profiles, 231; The Bickley jet, 233; The hyper-	
	bolic-tangent shear layer, 237	
32	Experimental results	239
Pro	blems for chapter 4	245
	5 UNIFORM ASYMPTOTIC APPROXIMATIONS	
33	Introduction	251
	Plane Couette flow	
34	The integral representations of the solutions	256
35	The differential equation method	263
	General velocity profiles	
36	A preliminary transformation	265
	- r	

Ŀ

ix

	С	0	N	Т	E	N	T	S
--	---	---	---	---	---	---	---	---

37	The inner and outer expansions The inner expansions, 268; The outer expansions,	267
•	271; The central matching problem, 276; Composite approximations, 278	
38	Uniform approximations The solution of well-balanced type, 280; The solu- tions of balanced type, 280; The solutions of dominant-recessive type, 283	280
39	A comparison with Lin's theory	285
40	Preliminary simplification of the eigenvalue relation	290
41	The uniform approximation to the eigenvalue relation A computational form of the first approximation to the eigenvalue relation, 299; Results for plane Poiseuille flow, 301	295
42	A comparision with the heuristic approximations to the eigenvalue relation The local turning-point approximation to $\phi_3(z)$, 305; Tollmien's improved approximation to $\phi_3(z)$, 306; The uniform approximation to $\phi_3(z)$ based on the truncated equation, 308; The uniform approximation to $\phi_3(z)$ based on the Orr-Sommerfeld equation, 309	305
43	A numerical treatment of the Orr-Sommerfeld problem using compound matrices Symmetrical flows in a channel, 315; Boundary- layer flows, 316	311
Proł	plems for chapter 5	317
	6 ADDITIONAL TOPICS IN LINEAR STABILITY THEORY	
_ 44	Instability of parallel flow of a stratified fluid Introduction, 320; Internal gravity waves and Ray- leigh-Taylor instability, 324; Kelvin-Helmholtz instability, 325	320
45	Baroclinic instability	333
46	Instability of the pinch	339
47	Development of linear instability in time and space Initial-value problems, 345; Spatially growing modes, 349	345

х

•

48	Instability of unsteady	flows	353
	Introduction, 353;	Instability of periodic flows, 354;	
	Instability of other u	insteady basic flows, 361	
Pro	blems for chapter 6		363

7 NONLINEAR STABILITY

49 Introduction	370
Landau's theory, 370; Discussion, 376	
50 The derivation of ordinary differential systems governing	ng 380
stability	
51 Resonant wave interactions	387
Internal resonance of a double pendulum, 38'	7;
Resonant wave interactions, 392	
52 Fundamental concepts of nonlinear stability	398
Introduction to ordinary differential equations, 39	8;
Introduction to bifurcation theory, 402; Structur	al
stability, 407; Spatial development of nonline	ar
stability, 416; Critical layers in parallel flow, 420	
53 Additional fundamental concepts of nonlinear stability	y 423
The energy method, 424; Maximum and minimu	m
energy in vortex motion, 432; Application of bound	n-
dary-layer theory to cellular instability, 434	
54 Some applications of the nonlinear theory	435
Bénard convection, 435; Couette flow, 44	2;
Parallel shear flows, 450	
Problems for chapter 7	458

APPENDIX. A CLASS OF GENERALIZED AIRY FUNCTIONS

Aļ	The Airy functions $A_k(z)$	465
A2	The functions $A_k(z, p)$, $B_0(z, p)$ and $B_k(z, p)$	466
A3	The functions $A_k(z, p, q)$ and $B_k(z, p, q)$	472
A4	The zeros of $A_1(z, p)$	477
	Bibliography and author index	479
	Motion picture index	515
	Subject index	517

xi