MICROANALYTIC SIMULATION MODELS TO SUPPORT SOCIAL AND FINANCIAL POLICY Edited by ### **GUY ORCUTT** Yale University, New Haven #### JOACHIM MERZ Sonderforschungsbereich 3: Mikroanalytische Grundlagen der Gesellschaftspolitik Johann Wolfgang Goethe - Universität Frankfurt am Main ## HERMANN QUINKE Gesellschaft für Mathematik und Datenverarbeitung mbH Bonn 1986 NORTH-HOLLAND AMSTERDAM · NEW YORK · OXFORD ## CONTENTS | EDITORS' INTRODUCTION | 1 | |--|---| | PART 1: GENERAL ASPECTS | | | VIEWS ON MICROANALYTIC SIMULATION MODELING | 9 | | Guy Orcutt | | | Modeling in Support of Policy Microanalytic Simulation Modeling 2.1 The Need 2.2 Statistical Form and Estimation of Operating Characte 2.3 Representation of State 2.4 Relation to Transitional Matrix Modeling 2.5 Other Related Developments 2.5.1 Microbased Social Accounting 2.5.2 Evolutionary Modeling | 9
11
11
11
17
19
20
20
21 | | Microanalytic Simulation 3.1 Simulation 3.2 Sample Representation 3.3 Monte Carlo Simulation 3.4 Controlling Monte Carlo Variation in Explorations of Implications 3.5 Output Possibilities | 24
25 | | 4 Concluding Statement | 26 | | COMMENT | 27 | | Heinz P. Galler | | | POTENTIAL AND LIMITATIONS OF MICROSIMULATION M | ODELS 31 | | | 21 | | Microsimulation Models as an Instrument for Policy Evalua The Fundamental Principle of Microsimulation Potential of Microsimulation Models Limitations of Microsimulation Models Microsimulation Models and Policy Evaluation Aspects of the Further Development of Microsimulation M | 31
33
35
39 | | COMMENT | 42 | | Nelson McClung | | | | UISITE RESEARCH ON METHODS AND TOOLS FOR ROANALYTIC SIMULATION MODELS | 45 | |---|--|--| | Peter | Hoschka | | | 1
2
3
4
5
6
7
8
9
10
11 | Introduction Shortcomings of Micromodels Behavioral Hypotheses The Dynamics of Behavioral Changes Effects of Higher Order Quality and Accessibility of Data Time Required for Development Computing Capacity Required Quality of Prediction Complexity Micromodels and Artificial Intelligence Conclusions | 45
46
47
48
48
49
50
51
52
52
53
54 | | | MENT | 55 | | BRO | ld Beebout ADENING POLICY MODELS: ERNATIVE STRATEGIES | 59 | | | en B. Caldwell | 0, | | 1 | Introduction | 59 | | 2 | Purpose of the Paper: To Assess Four Modeling Strategies | 60 | | 3 | Desirable Features for Policy Models 3.1 Detailed Locational Identification | 61
61 | | | 3.2 Both Individual and Corporate Actors Should Be | | | | Fundamental Elements 3.3 Individual and Corporate Actors Should Interact; | 62 | | | Actors Should Alter Settings; Settings Should Influence Actors | 63
64 | | | 3.4 Behavioral Heterogeneity Should Be Represented3.5 Distributional Outcomes Should Be Represented | 65 | | | 3.6 Models Should Be Genuinely Dynamic: Both System Evolution and Individual Life Histories Should Be Generated | 65 | | 4 | Multidimensional Mathematical Demography | 65 | | 5 | Econometric Models with Disaggregated Population Sectors | 67 | | 6
7 | The Linked Models Strategy The Pure Micro Strategy | 70
72 | | • | 7.1 Incorporate, Corporate and Individual Actors in One | | | | Framework 7.2 Add Location as an Attribute of All Actors | 73
73 | | | 7.3 Make Firms and Individuals Interact | . 74 | | 8
9 | A Digression on Computational Costs of Micro Models
Summary | 75
76 | | COM | MENT | 78 | | Hermann Quinke | | • | | PAR | T 2: MODELS AND APPLICATIONS | | |------|--|--| | | LUATING REAGAN ADMINISTRATION SOCIAL PROGRAM
NGES: TWO APPLICATIONS OF MATH | 83 | | Haro | ld Beebout | | | 1 2 | Introduction The MATH Model 2.1 The MATH Approach 2.2 The MATH Data Base 2.3 The MATH Computer Model | 83
84
84
85
85 | | 3 | Application to Estimating the Impact of Reagan Welfare Program Cutbacks 3.1 The Modeling Approach 3.2 The Results | 88
89
90 | | 4 | Application to Estimating the Effectiveness of Incentives for Private Household Retirement Savings 4.1 The Modeling Approach 4.2 The Simulation Results | 91
91
94 | | 5 | Conclusion | 97 | | COM | MENT | 98 | | Guni | nar Eliasson | | | | ART OF TRANSFER POLICY ANALYSIS | 101 | | 1 | Program Analysis 1.1 Personal Income Tax 1.2 General U.S. Grant | 102
102
102 | | 2 | Data 2.1 Administrative Records 2.2 Synthetic Units 2.3 Electronic Computers | 103
103
104
105 | | 3 | Improving Microsimulation 3.1 Population Units 3.2 Accounting Period 3.3 Record Editing 3.4 File Matching 3.5 Subsampling 3.6 Aging 3.7 Replicating Program Rules 3.8 Behavioral Responses 3.9 General Equilibrium Effects | 105
106
106
107
108
109
110
110 | | 4 | Prospects | 111 | | | IMENT stof Helberger | 113 | | OF I | ROANALYTIC SIMULATION MODELS FOR THE EVALUATION NTEGRATED CHANGES IN TAXES AND TRANSFERS: THEIR E IN TAX AND TRANSFER REFORM IN ISRAEL | 117 | |------------------|--|---| | Jack | Habib | | | 1 2 | Introduction The Policy Context 2.1 Diagramatic Exposition of the Alternative Strategies | 117
118
119 | | 3
4
5
6 | The Development of the Policy Debate and its Implications for the Simulation Model The Structure of the Model 4.1 The Data Base 4.2 The Outcome Measures 4.3 Generating Comparable Alternatives The Results and Subsequent Policy Development Concluding Remarks | 122
124
124
124
126
131 | | • | Concluding Remarks | | | | MENT | 135 | | Jaine | s N. Morgan | | | DEV. | ROANALYTIC TAX SIMULATION MODELS IN EUROPE:
ELOPMENT AND EXPERIENCE IN THE GERMAN FEDERAL
ISTRY OF FINANCE | 139 | | Volk | er Lietmeyer | | | 1 2 | Introduction Structure 2.1 Functions 2.2 Data Base 2.2.1 Content of the Sample 2.2.2 Starting-Point for the Generation of the Sample 2.2.3 Mode of Selection 2.2.4 Size of the Sample 2.3 Aging 2.3.1 The Problem Stated 2.3.2 Aging of the Income Items 2.3.3 Structural Aging 2.4 MTSM for the Taxation of Enterprises | 139
141
141
141
142
142
143
143
143
144
144 | | 3 | Experience in the German Federal Ministry of Finance 3.1 Introduction 3.2 Data Base 3.3 The Ministry of Finance's Synthetic MTSM for Income Tax 3.3.1 Introduction 3.3.2 Requirements 3.3.3 Data Base 3.3.4 Aging 3.3.5 Calculation and Evaluation Programs 3.3.6 Examples of Application 3.3.7 Limits of Application | 146
146
147
147
148
148
148
149
150 | | 4 | Conclusion | 150 | | COM | MENT | 153 | | | riad Diakhayan | | | | | XI | |---------------|--|---| | | OF SIMULATION TECHNIQUES IN DEVELOPING A ISING ALLOWANCE ALLOCATION SYSTEM | 155 | | Euge | en Dick | | | COM | IMENT | 168 | | Volk | er Lietmeyer | | | TRA | ICROSIMULATION MODEL FOR THE GERMAN FEDERAL
INING ASSISTANCE ACT – PRINCIPLES, PROBLEMS AND
ERIENCES | 171 | | Diet | er Bungers and Hermann Quinke | | | 1
2
3 | Introduction The Transfer Law and the Resulting Planning Task Advantages of the Microsimulation Approach in Modeling | 171
172 | | 4 | BAföG Methodological Problems in Implementing the BAFPLAN System 4.1 The Micro Data File 4.2 Aging 4.3 Program Participation | 173
176
176
177
178 | | 5 | Experiences 5.1 Forecasting Record 5.2 Maintaining Model Usefulness 5.3 Computer Implementation | 179
179
182
183 | | COM | IMENT | 184 | | Davi | d M. Betson | | | | IASIM IN COMPARISON WITH OTHER MICROSIMULATION DELS | 187 | | Rich
Krist | ard Wertheimer II, Sheila R. Zedlewski, Joseph Anderson and
in Moore | | | 1 2 3 | Introduction Overview of DYNASIM2 The Family and Earnings History (FEH) Model 3.1 Overview of Structure and Operation of the FEH Model 3.2 Family Formation, Growth, and Dissolution Sector 3.3 Education, Location, and Disability Sector 3.4 Labor and Earnings Sector 3.5 Transfer and Taxes Sector | 187
189
191
191
192
192
193 | | 4 | The Jobs and Benefits History (JBH) Model 4.1 Overview of Structure and Operation of the JBH Model 4.2 The Jobs and Pension Coverage Module 4.3 The Benefits Module 4.4 The Retirement Module | 195
195
195
196
198 | | 5 | Applications of DYNASIM2 5.1 Creating Alternative Demographic and Economic Scenarios through 2030 | 198
198 | | 5.2 Public Sector Costs of Teenage Childbearing5.3 Integrating DYNASIM2 with the ICF Macroeconomic | 200 | |--|--| | Demographic Model | 202 | | 6 Conclusion | 205 | | COMMENT | 207 | | Gert Wagner | | | MICROANALYTIC SIMULATION AND SOCIAL POLICY | 211 | | James D. Smith | | | 1 Introduction 2 Housing 3 Demographic Simulations 4 Energy Simulations 5 Health Simulations 6 Wealth Distribution 6.1 Saving 6.2 Divorce 6.3 Death 6.4 Fertility 6.5 Chance and Other Factors | 211
211
212
213
214
215
215
216
216
216 | | 7 An Initial Population 8 Simulation Runs 8.1 A Chanceless Simulation 8.2 A Simulation of a Moderately Chancy World 8.3 A More Chancy World 8.4 An Even More Chancy World 8.5 A Look at the Simulation Results | 217
217
218
218
218
220
220 | | COMMENT | 223 | | Hans-Jürgen Krupp | | | THE MICROSIMULATION MODEL OF THE Sfb 3 FOR THE ANALYSIS OF ECONOMIC AND SOCIAL POLICIES | 227 | | Heinz P. Galler and Gert Wagner | | | Modeling Concept 1.1 Dynamic Cross Sectional Simulation 1.2 Dynamic Longitudinal Simulation 1.3 Static Cross Section Simulation | 227
228
228
230 | | The Structure of Hypotheses 2.1 Aging the Population 2.2 Labor Force Participation | 231
234
234 | | 3 Applications in the Special Collaborative Programme 3 3.1 Microanalyses Concerning a Pension Reform 3.2 Microanalyses Concerning Shortening of Working Hours | 238
238
242 | | 4 The Outlook: Possibilities and Limitations | 244 | | COMMENT James D. Smith | 248 | | | XIII | | | |---|--|--|--| | LONGITUDINAL MICROSIMULATION OF LIFE INCOME | | | | | Winfried Hain and Christof Helberger | | | | | 1 Questions and Problems of Longitudinal and Life Cycle Analysis | 251 | | | | Alternatives of Longitudinal Simulation and Basic Conception of the Sfb 3-Longitudinal Simulation Model The Structure of the Demographic Processes The Result of Life Income Simulation Distributional Effects of Educational Transfers Interpersonal Redistribution Within Statutory | 253
258
262
263 | | | | Pensions System | 266 | | | | COMMENT | 271 | | | | Richard Wertheimer II | | | | | FUTURE DIRECTIONS FOR MICROANALYTIC SIMULATION MODELING OF THE LABOR MARKET | 275 | | | | David M. Betson | | | | | Introduction Microanalytical Simulation Models for the Analysis of | 275 | | | | Social Policy | 277 | | | | Towards a MSM of Unemployment Behavior Conducting Simulations With a Job Acceptance Model: | 286 | | | | An Illustrative Example 5 Conclusions | 289
293 | | | | COMMENT | 295 | | | | Jack Habib | | | | | THE SWEDISH MICRO-TO-MACRO MODEL: IDEA, DESIGN AND APPLICATION | 299 | | | | Gunnar Eliasson | | | | | The Idea of the MOSES Economy The Firm, the Rate of Return Requirement and the Markets Overall Macro Structure of the MOSES Economy Technical Change at the Firm Level The Firm and the MIP Principle Short Term — Production Search Short Term — Labor Market Search Foreign Competition, Foreign Trade and the Exchange Rate Short Term — Product Market Long Term — Investment Decisions Some Properties of the Model System Empirical Verification and Application 12.1 Estimation problems 12.2 Estimation | 299
301
303
306
306
310
315
317
318
319
320
322
322
326 | | | | 12.2 Lamagon | J 40 | | | | | 12.3 Data base12.4 Macroeconomic Tracking Performance | 327
328 | |----------------------------|--|---| | COM | IMENT | 329 | | Guy | Orcutt | | | | | | | | TORS DETERMINING ACCEPTANCE AND SUCCESS OF ROANALYTIC SIMULATION MODELS | 333 | | Siegi | ried Dickhoven | | | 1
2
3 | Introduction Conceptual Framework Approach to the Research Problem 3.1 Data and Methods 3.2 The Cases Chosen | 333
334
335
335
335 | | 4 5 | Successful Implementation and Utilization of Policy Models Critical Variables for Implementation 5.1 Transfer Policies 5.2 Environmental Preconditions 5.3 Organizational Attributes of the Modelers 5.4 Organizational Attributes of the User Agencies 5.5 Technology | 336
338
338
339
339
340
340 | | 6
7 | Types of Model Use
Conclusions | 341
344 | | COM | IMENT | 345 | | Euge | en Dick | | | | | | | PAR | T 3: DATA, METHODS AND SOFTWARE | | | EXP | ERIENCE WITH THE PANEL STUDY OF INCOME DYNAMICS | 349 | | Jame | es N. Morgan and Greg J. Duncan | | | 1
2
3
4
5
6 | Introduction Sampling Considerations Sampling Aspects of Panels Mundane Lessons Learned From On-the-job Training Costs of Panels Compared with Sequence of Cross-Sections Analytic Advantages of Panels, and Some Problems 6.1 Age-Cohort Problems 6.2 Errors in Explanatory Variables 6.3 Real and Spurious Autocorrelation 6.4 Error Components Models 6.5 Lagged Effects 6.6 Selection Biases 6.7 Categorical Variables | 349
350
351
354
356
357
358
360
361
361
362 | | | 6.8 Joint and Sequential Decisions, and Alternatives | 363 | | 7
8 | Panel Data Analysis and Simulation Studies Summary | 364
365 | |-------------|---|---------------------------------| | COM | MENT | 366 | | Peter | Hoschka | | | EXP | LECTING DATA FOR MICRO ANALYSIS:
ERIENCES FROM THE HUS-PILOT STUDY | 369 | | N. A | nders Klevmarken | | | 1 2 3 | The HUS-Project: An Introduction Model Structure and Data Need The HUS-Pilot Study 3.1 The Pilot Study Design 3.2 Nonresponse | 369
372
375
375
380 | | 4 | Comparisons of Measurement Methods 4.1 Expenditure Estimates from One Week Diaries as | . 385 | | | Compared to Estimates from Yesterday Questions 4.2 Comparisons between Personal Visits and Telephone | 385 | | | Interviews | 386 | | | 4.3 Time-Use Estimates from Yesterday Questions Compared to Estimates from Retrospective Questions for 14 Days4.4 Estimates of Time-off Work of Work | 388
389 | | 5 | Conclusions 5.1. Suppose of Possilta from Toots of Alternative Pote | 391 | | | 5.1 Summary of Results from Tests of Alternative Data
Collection Methods5.2 Strategies in View of High Nonresponse | 391
392 | | COM | MENT | 396 | | Joac | him Merz | | | PRO | TISTICAL MATCH: EVALUATION OF EXISTING
CEDURES AND IMPROVEMENTS BY USING ADDITIONAL
DRMATION | 401 | | Gerh | ard Paass | | | 1
2
3 | Introduction Empirical Test of the Quality of Matching Methods The Use of Additional Information 3.1 Normal Distribution 3.2 Locally Linear Distributions | 401
404
408
409
413 | | 4 ·
5 | Empirical Results | 417 | | | Conclusions and Extensions | 420 | | | MENT | 421 | | IN. A | nders Klevmarken | | XV | | UCTURAL ADJUSTMENT IN STATIC AND DYNAMIC ROSIMULATION MODELS | 423 | |---------------------------------|---|--| | Joach | nim Merz | | | 1
2
3
4 | Adjustment and Microsimulation — Some General Aspects Aggregate Data as the Restrictions in the Adjustment Problem The Microdata to be Adjusted — Static versus Dynamic Aging Solving the Adjustment Problem — Demographic Aging, Economic Aging and Alignment | 423
425
427
431 | | 5 | Dynamic Adjustment Using Kalman Filtering and Optimal Control Theory 5.1 Optimal Structural Adjustment Using the Kalman Filter 5.2 Optimal Control and the Adjustment Problem | 437
437
439 | | 6 | Static and Dynamic Microsimulation and Dynamic Adjustment 6.1 Static Microsimulation and Dynamic Adjustment 6.2 Dynamic Microsimulation and Dynamic Adjustment | 441
441
441 | | 7 | Adjustment Techniques Used by Major Microsimulation Models | 442 | | 8 | Concluding Remarks | 446 | | | MENT | 447 | | Steve | en Caldwell | | | MICI | HODOLOGICAL ASPECTS IN MODELING DYNAMIC RO HYPOTHESES | 451 | | Hans | -Jürgen Andreß | | | 1
2
3
4
5
6
7 | Introduction Hypotheses Defining the Process Observing the Process Modeling the Process Estimating the Process Extensions of the Basic Model and Special Problems 7.1 Multiple and Repeatable Events 7.2 Unobserved Variables 7.3 Time-Varying Exogenous Variables 7.4 Unobserved History of the Process (Left Censoring) | 451
452
454
456
461
466
470
471
472
472 | | 8 | Conclusion | 473 | | | IMENT
lösgen | 474 | | | TWARE IMPLEMENT OF MICROANALYTIC SIMULATION
DELS – STATE OF THE ART AND OUTLOOK | 475 | | Willy | Klösgen | | | 1 2 | Introduction State of the Art of Software Support of MSMs | 475
477 | | | | XVII | |---------------|--|--| | | 2.1 The MASH System 2.1.1 Data Management and Preparation 2.1.2 Model Construction | 478
478
479 | | | 2.1.3 Model Operation 2.2 The MICROSIM System 2.2.1 Data Management and Preparation 2.2.2 Model Construction 2.2.3 Model Operation | 480
481
481
482
482 | | | 2.3 The MBS System 2.3.1 Data Management and Preparation 2.3.2 Model Construction 2.3.3 Model Operation | 483
483
484
485 | | 3 | Outlook of Software Support of MSMs 3.1 General-Purpose Microsimulation Software Systems 3.2 Requirements for a Simulation Language 3.3 Hardware Environments for MSMs | 485
486
487
489 | | 4 | Conclusion | 490 | | COM | MENT | 492 | | Gerri | iet P. Müller | | | SIMU | A STRUCTURE REQUIREMENTS OF MICROANALYTIC ULATION MODELS | 495 | | Gerri | iet P. Müller | | | $\frac{1}{2}$ | Introduction Problem-Oriented Design of Microanalytic Simulation | 495 | | 3 4 | Programs A Hierarchy for Data Modeling A Conceptual Global MSM-Schema 4.1 Logical Abstraction 4.2 Constraint Specifiactions 4.3 Some Aspects of Representation | 496
497
499
499
508
511 | | 5 | Implications for the Design of "Operating Characteristics" | 513 | | COM | IMENT | 517 | | Gerh | ard Paass | | | REF | ERENCES | 519 | | INDI | EX | 547 | | CON | TRIBUTORS | 551 |