Contents

1. Basic Concepts and Two-Fluid Description of Plasmas
 1.1 Basic Plasma Concepts ... 2
 1.2 The Vlasov Equation .. 5
 1.3 The Moment Equations ... 6
 1.4 The Two-Fluid Description of Plasma 10
 1.5 Plasma Waves .. 11
 1.6 Debye Shielding ... 14

2. Computer Simulation of Plasmas Using Particle Codes
 2.1 Basic Ingredients of a Particle Code 19
 2.2 A 1-D Electrostatic Particle Code 21
3. Electromagnetic Wave Propagation in Plasmas

3.1 Wave Equation for Light Waves in a Plasma 27
3.2 WKB Solution for Wave Propagation in an Inhomogeneous Plasma 30
3.3 Analytic Solution for Plasma with a Constant Density Gradient 32

4. Propagation of Obliquely Incident Light Waves in Inhomogeneous Plasmas

4.1 Obliquely Incident S-polarized Light Waves 38
4.2 Obliquely Incident P-polarized Light Waves — Resonance Absorption 39

5. Collisional Absorption of Electromagnetic Waves in Plasmas

5.1 Collisional Damping of Light Waves 46
5.2 Collisional Damping of a Light Wave in an Inhomogeneous Plasma 48
5.3 Collisional Absorption Including Oblique Incidence and a Density Dependent Collision Frequency 51
5.4 Derivation of the Damping Coefficient 52

6. Parametric Excitation of Electron and Ion Waves

6.1 Coupling via Ion Density Fluctuations 58
6.2 The Ponderomotive Force 60
6.3 Instabilities — A Physical Picture 61
6.4 Instability Analysis 62
6.5 Dispersion Relation 66
6.6 Instability Threshold due to Spatial Inhomogeneity 69
6.7 Effect of Incoherence in the Pump Wave 70
11. Nonlinear Features of Underdense Plasma Instabilities
 11.1 Nonlinear features of Brillouin Scattering 127
 11.2 Nonlinear Features of Raman Scattering 132
 11.3 Nonlinear Features of the Two-Plasmon Decay and Filamentation Instabilities 135

12. Electron Energy Transport
 12.1 Electron Thermal Conductivity 144
 12.2 Multigroup Flux-Limited Diffusion 146
 12.3 Other Influences on Electron Heat Transport 147
 12.4 Heat Transport in Laser-Irradiated Targets 149

13. Laser Plasma Experiments
 13.1 Density Profile Steepening 155
 13.2 Absorption of Intense, Short Pulse-Length Light 156
 13.3 Heated Electron Temperatures 158
 13.4 Brillouin Scattering 160
 13.5 Raman Scattering 162
 13.6 Other Plasma Processes 167
 13.7 Wavelength Scaling of Laser Plasma Coupling 168