NICOLAS BOURBAKI

Algebra II

Chapters 4-7

Translated by P.M. Cohn & J. Howie

Table of contents

HAPTER IV. — POLYNOMIALS AND RATIONAL FRACTIONS	I٧
§ 1. Polynomials	IV
1. Definition of polynomials	IV
2. Degrees	IV
3. Substitutions	I
4. Differentials and derivations	IV
5. Divisors of zero in a polynomial ring	IV
6. Euclidean division of polynomials in one indeterminate	IV
7. Divisibility of polynomials in one indeterminate	I/
8. Irreducible polynomials	I
§ 2. Zeros of polynomials	I
1. Roots of a polynomial in one indeterminate. Multipli-	
city	I
2. Differential criterion for the multiplicity of a root	I.
3. Polynomial functions on an infinite integral domain	I
§ 3. Rational fractions	I
1. Definition of rational fractions	I
2. Degrees	I
3. Substitutions	I
4. Differentials and derivations	ľ
§ 4. Formal power series	I
1. Definition of formal power series. Order	I
2. Topology on the set of formal power series. Summable	
families	I
3. Substitutions	I
4. Invertible formal power series	I
5. Taylor's formula for formal power series	I.
6. Derivations in the algebra of formal power series	Ι
7. The solution of equations in a formal power series ring	I
8. Formal power series over an integral domain	I
9. The field of fractions of the ring of formal power series in	
one indeterminate over a field	I.
10 Exponential and logarithm	- 17

§ 5. Symmetric tensors and polynomial mappings	IV.41
1. Relative traces	IV.41
2. Definition of symmetric tensors	
3. Product for symmetric tensors	
4. Divided powers	
5. Symmetric tensors over a free module	
6. The functor TS	
7. Coproduct for symmetric tensors	
8. Relations between TS (M) and S (M)	
9. Homogeneous polynomial mappings	
10. Polynomial mappings	
11. Relations between $S(M^*)$, $TS(M)^{*gr}$ and $Pol(M, A)$.	IV.59
§ 6. Symmetric functions	IV.61
•	
1. Symmetric polynomials	
2. Symmetric rational fractions	
3. Symmetric formal power series	
4. Sums of powers	
5. Symmetric functions in the roots of a polynomial	
6. The resultant	
7. The discriminant	
Exercises on § 1	
Exercises on § 2	IV.87
Exercises on § 3	IV.89
Exercises on § 4	IV.90
Exercises on § 5	
Exercises on § 6	
Table	IV.103
Chapter V. — Commutative fields	V.1
§ 1. Prime fields. Characteristic	.,. V.1
1. Prime fields	V.1
2. Characteristic of a ring and of a field	
3. Commutative rings of characteristic p	V.3
4. Perfect rings of characteristic p	
5. Characteristic exponent of a field. Perfect fields	
6. Characterization of polynomials with zero differential	
§ 2. Extensions	V.9
1. The structure of an extension	
2. Degree of an extension	
3. Adjunction	
4. Composite extensions	V.12
5. Linearly disjoint extensions	V.13
§ 3. Algebraic extensions	
1. Algebraic elements of an algebra	V.15

	2. Algebraic extensions
	3. Transitivity of algebraic extensions. Fields that are relatively algebraically closed in an extension field
§ 4.	Algebraically closed extensions 1. Algebraically closed fields 2. Splitting extensions 3. Algebraic closure of a field
§ 5.	p-radical extensions 1. p-radical elements 2. p-radical extensions
§ 6.	Etale algebra 1. Linear independence of homomorphisms 2. Algebraic independence of homomorphisms 3. Diagonalizable algebras and etale algebras 4. Subalgebras of an etale algebra 5. Separable degree of a commutative algebra 6. Differential characterization of etale algebras 7. Reduced algebras and etale algebras
§ 7.	Separable algebraic extensions 1. Separable algebraic extensions 2. Separable polynomials 3. Separable algebraic elements 4. The theorem of the primitive element 5. Stability properties of separable algebraic extensions 6. A separability criterion 7. The relative separable algebraic closure 8. The separable closure of a field 9. Separable and inseparable degrees of an extension of finite degree
§ 8.	Norms and traces 1. Recall 2. Norms and traces in etale algebras 3. Norms and traces in extensions of finite degree
§ 9.	Conjugate elements and quasi-Galois extensions 1. Extension of isomorphisms 2. Conjugate extensions. Conjugate elements 3. Quasi-Galois extensions 4. The quasi-Galois extension generated by a set
§ 10	1. Definition of Galois extensions 2. The Galois group 3. Topology of the Galois group

4. Galois descent	V.62
5. Galois cohomology	V.64
6. Artin's theorem	V.65
7. The fundamental theorem of Galois theory	V.67
8. Change of base field	V.69
9. The normal basis theorem	V.72
10. Finite Γ-sets and etale algebras	V.75
11. The structure of quasi-Galois extensions	V.76
§ 11. Abelian extensions	V.77
1. Abelian extensions and the abelian closure	V.77
2. Roots of unity	V.78
3. Primitive roots of unity	V.79
4. Cyclotomic extensions	V.81
5. Irreducibility of cyclotomic polynomials	V.83
6. Cyclic extensions	V.85
7. Duality of Z / <i>n</i> Z -modules	V.86
8. Kummer theory	V.88
9. Artin-Schreier theory	V.91
§ 12. Finite fields	V.93
1. The structure of finite fields	V.93
2. Algebraic extensions of a finite field	V.94
3. The Galois group of the algebraic closure of a finite	
field	V.96
4. Cyclotomic polynomials over a finite field	V.97
§ 13. p-radical extensions of height ≤ 1	V.98
1. p-free subsets and p-bases	V.98
2. Differentials and p-bases	V.100
3. The Galois correspondence between subfields and Lie	
algebras of derivations	V.104
§ 14. Transcendental extensions	V.106
1. Algebraically free families. Pure extensions	V.106
2. Transcendence bases	V.107
3. The transcendence degree of an extension	V.110
4. Extension of isomorphisms	V.111
5. Algebraically disjoint extensions	V.112
6. Algebraically free families of extensions	V.115
7. Finitely generated extensions	V.117
§ 15. Separable extensions	V.118
1. Characterization of the nilpotent elements of a ring	V.118
2. Separable algebras	V.118 V.119
3. Separable extensions	V.119 V.121
4. Mac Lane's separability criterion	V.121 V.122
5. Extensions of a perfect field	V.122 V.125
6. The characterization of separability by automorphisms	V.125

§ 16. Differential criteria of separability	V.127
1. Extension of derivations: the case of rings	V.127
2. Extension of derivations: the case of fields	
3. Derivations in fields of characteristic zero	
4. Derivations in separable extensions	
5. The index of a linear mapping	
6. Differential properties of finitely generated extensi	
7. Separating transcendence bases	V.136
§ 17. Regular extensions	
1. Complements on the relative separable algebraic	c clo-
sure	
2. The tensor product of extensions	V.139
3. Regular algebras	
4. Regular extensions	
5. Characterization of regular extensions	
6. Application in composite extensions	
1	
Exercises on § 1	V.145
Exercises on § 2	V.146
Exercises on § 3	V.147
Exercises on § 4	V.150
Exercises on § 5	V.150
Exercises on § 6	V.151
Exercises on § 7	V.151
Exercises on § 8	V.153
Exercises on § 9	V.153
Exercises on § 10	
Exercises on § 11	** * * * * *
Exercises on § 12	
Exercises on § 13	
Exercises on § 14	***
Exercises on § 15	
Exercises on § 17	
Historical note (chapters IV and V)	
Bibliography	V.197
Chapter VI. — Ordered groups and fields	VI.1
§ 1. Ordered groups. Divisibility	VI.1
1. Definition of ordered monoids and groups	VI.1
2. Pre-ordered monoids and groups	
3. Positive elements	
4. Filtered groups	
5. Divisibility relations in a field	
6. Elementary operations on ordered groups	
7 Increasing homomorphisms of ordered groups	V1.7 VI 7

8. Suprema and infima in an ordered group	VI.8 VI.10 VI.11
11. Positive and negative parts 12. Coprime elements 13. Irreducible elements	VI.12 VI.13 VI.17
§ 2. Ordered fields 1. Ordered rings 2. Ordered fields 3. Extensions of ordered fields 4. Algebraic extensions of ordered fields 5. Maximal ordered fields 6. Characterization of maximal ordered fields. Euler-Lagrange theorem 7. Vector spaces over an ordered field	VI.19 VI.20 VI.21 VI.23 VI.25 VI.26 VI.28
Exercises on § 1	VI.30 VI.37
CHAPTER VII. — MODULES OVER PRINCIPAL IDEAL DOMAINS	VII.1
§ 1. Principal ideal domains	VII.1
 Definition of a principal ideal domain Divisibility in principal ideal domains Decomposition into irreducible factors in principal ideal 	VII.1 VII.1
domains 4. Divisibility of rational integers 5. Divisibility of polynomials in one indeterminate over a field	VII.3 VII.5
§ 2. Torsion modules over a principal ideal domain	VII.6
 Modules over a product of rings Canonical decomposition of a torsion module over a 	VII.6
principal ideal domain 3. Applications: I. Canonical decompositions of rational numbers and of rational functions in one indeterminate	VII.7 VII.10
4. Applications: II. The multiplicative group of units of the integers modulo <i>a</i>	VII.12
§ 3. Free modules over a principal ideal domain	VII.14
§ 4. Finitely generated modules over a principal ideal domain	VII.15
 Direct sums of cyclic modules Content of an element of a free module Invariant factors of a submodule Structure of finitely generated modules 	VII.15 VII.16 VII.18 VII.19
5. Calculation of invariant factors	VII.20

6. Linear mappings of free modules, and matrices over a	
principal ideal domain	VII.21
7. Finitely generated abelian groups	VII.22
8. Indecomposable modules. Elementary divisors	VII.23
9. Duality in modules of finite length over a principal ideal	
domain	VII.25
§ 5. Endomorphisms of vector spaces	VII.28
1. The module associated to an endomorphism	VII.28
2. Eigenvalues and eigenvectors	VII.30
3. Similarity invariants of an endomorphisms	VII.31
4. Triangularisable endomorphism	VII.34
5. Properties of the characteristic polynomial: trace and	
determinant	VII.36
6. Characteristic polynomial of the tensor product of two	
endomorphisms	VII.39
7. Diagonalisable endomorphisms	VII.40
8. Semi-simple and absolutely semi-simple endomor-	
phisms	VII.41
9. Jordan decomposition	VII.43
Exercises on § 1	VII.48
Exercises on § 2	VII.54
Exercises on § 3	VII.59
Exercises on § 4	VII.62
Exercises on § 5	VII.70
listorical note (Chapters VI and VII)	VII.73
Sibliography	VII.83
ndex of notations	445
ndex of terminology	447
able of contents	155