Fortschritt-Berichte VDI

Reihe 4

Bauingenieurwesen

Dipl.-Ing. Katharina Klemt, Roßdorf

Nr. 176

The bearing and deformation behaviour of concrete subjected to uniaxial compressive short-term loading

TABLE OF CONTENTS

1 INTRODUCTION _

- 1.1 Research significance
- 1.2 Objective
- 1.3 Approach

2 STATE OF THE ART _____

- 2.1 Fundamentals of the structure of concrete
 - 2.1.1 Definitions
 - 2.1.2 The interfacial transition zone
- 2.2 The bearing and deformation behaviour of concrete at the macroscopic level
 - 2.2.1 The stress-strain relation
 - 2.2.2 Lateral strain and volume change
 - 2.2.3 Behaviour for repeated loading and unloading
- 2.3 Fracture mechanics
 - 2.3.1 Linear elastic fracture mechanics
 - 2.3.2 Non-linear fracture mechanics and the fracture process zone
- 2.4 Mesoscopical alterations due to compressive loading
 - 2.4.1 Stress distribution with regard to the mesolevel
 - 2.4.2 Experimental observation of the mesostructural behaviour
 - 2.4.3 Numerical simulations with regard to the mesolevel

2.5 Observation techniques to detect alterations in the structure of concrete subjected to mechanical loading

- 2.5.1 Overview and demands
- 2.5.2 Strain measurements
- 2.5.3 Techniques with the use of sonic waves
- 2.5.4 Visualisation of internal alterations

1

5

VI

3.4

3 EXPERIMENTAL INVESTIGATIONS

3.1 Conception

- 3.2 Material composition and specimen preparation
 - 3.2.1 Criteria for the choice of the investigated materials
 - 3.2.2 Material composition
 - 3.2.3 Casting, curing and preparation
 - 3.2.4 Specimen size and shape
 - 3.2.5 Compressive strength and density
- 3.3 Conditions for the compressive tests
 - 3.3.1 Application of compressive load
 - 3.3.2 Testing procedure
 - Deformation behaviour
 - 3.4.1 Stress-strain behaviour
 - 3.4.2 The relation of lateral strain to specimen height
- 3.5 Investigations with ultrasonic transmission
 - 3.5.1 Experimental setup and testing procedure
 - 3.5.2 Calibration
 - 3.5.3 Analysis
 - 3.5.4 Results
- 3.6 Digital image correlation
 - 3.6.1 Experimental setup and testing procedure
 - 3.6.2 Analysis
 - 3.6.3 Results
- 3.7 Stereomicroscopy on specimens stabilized with epoxy
 - 3.7.1 Experimental setup and testing procedure
 - 3.7.2 Preparation and observation by stereomicroscopy
 - 3.7.3 Results
- 3.8 Bond strength between matrix and aggregate
 - 3.8.1 Experimental setup and testing procedure
 - 3.8.2 Results

4 CONCLUSIONS ON THE BEARING AND DEFORMATION PERFORMANCE OF CONCRETE _____

59

- 4.1 The fracture process zone
- 4.2 The boundary zone
 - 4.2.1 Definition
 - 4.2.2 Drafting a basic Finite Element Model for simulating the mesoscoscopical behaviour
- 4.3 Localization effects in the structure of concrete

- 4.4 Mesostructural failure process with regard to the concrete composition
 - 4.4.1 Normal concrete
 - 4.4.2 Lightweight concrete
 - 4.4.3 High strength concrete
 - 4.4.4 Comparison of the different concrete compositions
- 4.5 Mesoscopical discontinuities during decreased loading
- 4.6 Excursion: The influence of the mesostructure on the propagation of ultrasonic waves

5 A QUANTITATIVE MODEL FOR DESCRIBING THE STRESS-STRAIN BEHAVIOUR OF CONCRETE ______79

- 5.1 Quantifying the mesoscopical deformations
- 5.2 Analysing and modelling
 - 5.2.1 Main influence parameters
 - 5.2.2 Assumptions and parameters for the model
 - 5.2.3 Modelling
- 5.3 Verification of the model

6 OUTLOOK ______93

APPENDIX ______95 A Mix design and material properties

- B Digital image correlation technique results
- C Direction of scattering
- D Influence of the size of an inclusion on the stress concentration
- E Calculation of the volume of matrix, aggregate and boundary zone

REFERENCES _____