Reinhard Bruckner

Advanced Organic Chemistry

Reaction Mechanisms

A Harcourt Science and Technology Company San Diego • San Francisco • New York • Boston • London • Sydney • Tokyo

Forewo	ord		xv
Preface to the English Edition			
Preface	e to the	German Edition	xix
Ackno	wledgm	ents	xxiii
1	Radic	al Substitution Reactions at the Saturated C Atom	1
1.1	Bondi	ng and Preferred Geometries in C Radicals, Carbenium	
	Ions a	nd Carbanions	1
	1.1.1	Preferred Geometries	2
	1.1.2	Bonding	3
1.2	Stabili	ity of Radicals	5
	1.2.1	Reactive Radicals	5
	1.2.2	Unreactive Radicals	8
1.3	Relati	ve Rates of Analogous Radical Reactions	. 9
	1.3.1	The Bell-Evans-Polanyi Principle	10
	1.3.2	The Hammond Postulate	11
1.4	Radica	al Substitution Reactions: Chain Reactions	13
1.5	Radic	al Initiators	15
1.6	Radica	al Chemistry of Alkylmercury(II) Hydrides	16
1.7		al Halogenation of Hydrocarbons	19
	1.7.1	Simple and Multiple Chlorinations	19
	1.7.2	Regioselectivity of Radical Chlorinations	22
	1.7.3	Regioselectivity of Radical Brominations Compared	
		to Chlorinations	24
	1.7.4	Rate Law for Radical Halogenations;	
		Reactivity/Selectivity Principle	26
	1.7.5	Chemoselectivity of Radical Brominations	28
1.8	Autox	idations	32
1.9	Defun	ectionalizations via Radical Substitution Reactions	34
	1.9.1	Simple Defunctionalizations	34
	1.9.2	Defunctionalization via 5-Hexenyl Radicals:	
		Competing Cyclopentane Formation	37
	Refere		40
2	Nucle	ophilic Substitution Reactions at the Saturated C Atom	43
2.1	Nucle	ophiles and Electrophiles; Leaving Groups	43
2.2		and Poor Nucleophiles	44

· ·

Contents

2.3	Leavii	ng Groups and the Quality of Leaving Groups	46
2.4		eactions: Kinetic and Stereochemical Analysis	
		tuent Effects on Reactivity	49
	2.4.1	Energy Profile and Rate Law for S _N 2 Reactions:	
		Reaction Order	49
	2.4.2	Stereochemistry of S _N 2 Substitutions	51
	2.4.3	A Refined Transition State Model for the $S_N 2$ Reaction;	
		Crossover Experiment and Endocyclic Restriction Test	52
	2.4.4	Substituent Effects on $S_N 2$ Reactivity	54
2.5		eactions: Kinetic and Stereochemical Analysis;	
2.0		tuent Effects on Reactivity	57
	2.5.1	Energy Profile and Rate Law of S_N1 Reactions;	01
	2.2.1	Steady State Approximation	57
	2.5.2	Stereochemistry of S_N 1 Reactions; Ion Pairs	61
	2.5.2	Solvent Effects on S_N Reactivity	62
	2.5.3	Substituent Effects on S_N^1 Reactivity	65
2.6		•	05
2.0		Do S_N Reactions at Saturated C Atoms Take Place	
		ding to the S_N 1 Mechanism and When Do They Take	60
2.7		According to the S_N 2 Mechanism?	69
2.7		olecular S _N Reactions That Do Not Take Place via Simple	(0
		nium Ion Intermediates: Neighboring Group Participation	69
	2.7.1	Conditions for and Features of S_N Reactions with	
		Neighboring Group Participation	69
	2.7.2	Increased Rate through Neighboring Group Participation	71
	2.7.3	Stereoselectivity through Neighboring Group Participation	72
2.8	-	ratively Useful S _N 2 Reactions: Alkylations	76
	Refer	ences	81
3	Addit	ions to the Olefinic C=C Double Bond	85
3.1		concept of cis and trans Addition	86
3.2	Vocab	ulary of Stereochemistry and Stereoselective Synthesis I	87
	3.2.1	Isomerism, Diastereomers/Enantiomers, Chirality	87
	3.2.2	Chemoselectivity, Diastereoselectivity/Enantioselectivity,	
		Stereospecificity/Stereoconvergence	88
3.3	Addit	ions That Take Place Diastereoselectivity as cis Additions	91
	3.3.1	A Cycloaddition Forming Three-Membered Rings	92
	3.3.2	Additions to C=C Double Bonds That Are Related to	
		Cycloadditions and Form Three-Membered Rings, Too	93
	3.3.3	cis-Hydration of Olefins via the	
		Hydroboration/Oxidation/Hydrolysis Reaction Sequence	95
	3.3.4	Heterogeneously Catalyzed Hydrogenation	104
3.4		ioselective <i>cis</i> Additions to C=C Double Bonds	105
	3.4.1	Vocabulary of Stereochemistry and Stereoselective	
		Synthesis II: Topicity, Asymmetric Synthesis	106

.

	3.4.2	Asymmetric Hydroboration of Achiral Olefins	107
	3.4.3	Thought Experiment I on the Hydroboration of Chiral Olefins	
		with Chiral Boranes: Mutual Kinetic Resolution	109
	3.4.4	Thought Experiments II and III on the Hydroboration of	
		Chiral Olefins with Chiral Boranes: Reagent Control	
		of Diastereoselectivity, Matched/Mismatched Pairs,	
		Double Stereodifferentiation	110
	3.4.5	Thought Experiment IV on the Hydroboration of Chiral	
		Olefins with Chiral Dialkylboranes: Kinetic Resolution	112
	3.4.6	Catalytic Asymmetric Synthesis: Sharpless Oxidations	
	-	of Allyl Alcohols	113
3.5		ons That Take Place Diastereoselectively as trans	
	Additio	ons (Additions via Onium Intermediates)	116
	3.5.1	Addition of Bromine	117
	3.5.2	The Formation of Halohydrins; Halolactonization	
		and Haloetherification	118
	3.5.3	Solvomercuration of Olefins: Hydration of C=C	
		Double Bonds through Subsequent Reduction	121
3.6	Additio	ons That Take Place or Can Take Place without Stereocontrol	
	Depen	ding on the Mechanism	123
	3.6.1	Additions via Carbenium Ion Intermediates	123
	3.6.2	Additions via "Carbanion" Intermediates	126
	Refere	nces	126

4	β-Elin	ninations	129
4.1	Concepts of Elimination Reactions		129
	4.1.1	The Concept of α,β - and $1,n$ -Elimination	129
	4.1.2	The Terms syn- and anti-Elimination	130
	4.1.3	When Are Stereogenic syn- and anti-Selective	
		Eliminations Stereoselective?	131
	4.1.4	Formation of Regioisomeric Olefins by β -Elimination:	
		Saytzeff and Hofmann Product(s)	134
	4.1.5	The Synthetic Value of Het ¹ /Het ² in Comparison to	
		H/Het Eliminations	135
4.2	β-Elin	ninations of H/Het via Cyclic Transition States	136
4.3			
	The M	lechanistic Alternatives	140
4.4	E2 Eli	minations of H/Het and the E2/S _N 2 Competition	141
	4.4.1	Substrate Effects on the E2/S _N 2 Competition	141
	4.4.2	Base Effects on the E2/S _N 2 Competition	143
	4.4.3	A Stereoelectronic Effect on the E2/S _N 2 Competition	144
	4.4.4	The Regioselectivity of E2 Eliminations	146
	4.4.5	One-Pot Conversion of an Alcohol to an Olefin	148

vii

•*

4.5	E1 Eli	imination of H/Het from R _{tert} —X and the E1/S _N 1 Competition	149
	4.5.1	Energy Profiles and Rate Laws for E1 Eliminations	150
	4.5.2	The Regioselectivity of E1 Eliminations	152
	4.5.3	E1 Eliminations in Protecting Group Chemistry	155
4.6	E1 _{cb} E	Eliminations	156
	4.6.1	Unimolecular E1 _{cb} Eliminations: Energy Profile and	
		Rate Law	156
	4.6.2	Nonunimolecular E1 _{cb} Eliminations: Energy Profile and	
		Rate Law	157
	4.6.3	E1 _{cb} Eliminations in Protecting Group Chemistry	158
4.7	β -Elin	ninations of Het ¹ /Het ²	160
	4.7.1	Fragmentation of β -Heterosubstituted	
		Organometallic Compounds	161
	4.7.2	Julia-Lythgoe Synthesis of trans-Olefins	161
	4.7.3	Peterson Olefination	163
	4.7.4	Oxaphosphetane Fragmentation, Last Step of Wittig and	
		Horner-Wadsworth-Emmons Reactions	163
	4.7.5	Corey-Winter Reaction	165
	References		166

5	Substi	tution Reactions on Aromatic Compounds	169
5.1	Electr	ophilic Aromatic Substitutions via Wheland Complexes	
	("Ar-S	E Reactions")	169
	5.1.1	Mechanism: Substitution of H ⁺ vs ipso-Substitution	169
	5.1.2	Thermodynamic Aspects of Ar-S _E Reactions	171
	5.1.3	Kinetic Aspects of Ar-S _E Reactions: Reactivity	
		and Regioselectivity in Reactions of Electrophiles with	
		Substituted Benzenes	176
5.2	Ar-S _E	Reactions via Wheland Complexes: Individual Reactions	182
	5.2.1	Ar-Hal Bond Formation by Ar-S _E Reaction	182
	5.2.2	Ar—SO ₃ H Bond Formation by Ar-S _E Reaction	184
	5.2.3	Ar-NO ₂ Bond Formation by Ar-S _E Reaction	186
	5.2.4	Ar—N=N Bond Formation by Ar-S _E Reaction	188
	5.2.5	Ar—Alkyl Bond Formations by Ar-S _E Reaction	189
	5.2.6	Ar—C(OH) Bond Formation by Ar-S _E Reactions	
		and Associated Secondary Reactions	196
	5.2.7	Ar—C(=O) Bond Formation by Ar-S _E Reaction	197
	5.2.8	Ar-C(=O)H Bond Formation through Ar-S _E Reaction	199
5.3	Electrophilic Substitution Reactions on Metallated		
	Arom	atic Compounds	200
	5.3.1	Electrophilic Substitution Reactions of ortho-Lithiated	
		Benzene and Naphthalene Derivatives	201

	5.3.2	Electrophilic Substitution Reactions in Aryl Grignard and Aryllithium Compounds That Are Accessible from	
		Aryl Halides	203
	5.3.3	Electrophilic Substitutions on Arylboronic Acids and	
		Arylboronic Esters	206
5.4		ophilic Substitution Reactions in Aryldiazonium Salts	207
5.5		ophilic Substitution Reactions via	
		nheimer Complexes	211
	5.5.1	Mechanism	211
	5.5.2	Examples of Reactions of Preparative Interest	213
	5.3.3	A Special Mechanistic Case: Reactions of Aryl Sulfonates	
		with NaOH/KOH in a Melt	215
5.6		ophilic Aromatic Substitution via Arynes, cine Substitution	216
	Refere	ences	217
6	Nucle	ophilic Substitution Reactions on the Carboxyl Carbon	221
	(Exce	pt through Enolates)	
6.1		Containing Substrates and Their Reactions with Nucleophiles	221
6.2		anisms, Rate Laws, and Rate of Nucleophilic	
	Substi	tution Reactions at the Carboxyl Carbon	224
	6.2.1	Mechanism and Rate Laws of S_N Reactions on the	
		Carboxyl Carbon	224
	6.2.2	S_N Reactions on the Carboxyl Carbon: The Influence of	
		Resonance Stabilization of the Attacked C=O Double Bond	
		on the Reactivity of the Acylating Agent	230
	6.2.3	S_N Reactions on the Carboxyl Carbon: The Influence of the	
		Stabilization of the Tetrahedral Intermediate on the Reactivity	234
6.3		ation of Carboxylic Acids and of Carboxylic Acid Derivatives	236
	6.3.1	Activation of Carboxylic Acids and Carboxylic Acid	
		Derivatives in Equilibrium Reactions	237
	6.3.2	Conversion of Carboxylic Acids into Isolable Acylating Agents	238
	6.3.3	Complete in Situ Activation of Carboxylic Acids	240
6.4		ed S_N Reactions of Heteroatom Nucleophiles on the	
		xyl Carbon	244
	6.4.1	Hydrolysis of Esters	246
	6.4.2	Lactone Formation from Hydroxycarboxylic Acids	250
	6.4.3	Forming Peptide Bonds	254
	6.4.4	S _N Reactions of Heteroatom Nucleophiles with	
	_	Carbonic Acid Derivatives	256
6.5		actions of Hydride Donors, Organometallics, and	
		oatom-Stabilized "Carbanions" on the Carboxyl Carbon	260
	6.5.1	When Do Pure Acylations Succeed, and When Are	
		Alcohols Produced?	260

•

• 1

6.5.2	Acylation of Hydride Donors: Reduction of Carboxylic	
	Acid Derivatives to Aldehydes	263
6.5.3	Acylation of Organometallic Compounds and	
	Heteroatom-Stabilized "Carbanions": Synthesis of Ketones	265
References		268

7	Additions of Heteroatom Nucleophiles to Heterocumulenes. Additions of Heteroatom Nucleophiles to Carbonyl Compounds and Follow-up Reactions	271
7.1	Additions of Heteroatom Nucleophiles to Heterocumulenes	271
	7.1.1 Mechanism of the Addition of Heteroatom Nucleophiles to	271
	Heterocumulenes 7.1.2 Examples of the Addition of Heteroatom Nucleophiles to	271
	Heterocumulenes	272
7.2	Additions of Heteroatom Nucleophiles to Carbonyl Compounds	279
	7.2.1 On the Equilibrium Position of Addition Reactions of	
	Heteroatom Nucleophiles to Carbonyl Compounds	279
	7.2.2 Hemiacetal Formation	281
	7.2.3 Oligomerization/Polymerization of Carbonyl Compounds	286
7.3	Addition of Heteroatom Nucleophiles to Carbonyl Compounds in	
	Combination with Subsequent S _N 1 Reactions: Acetalizations	288
	7.3.1 Mechanism	288
	7.3.2 Formation of <i>O</i> , <i>O</i> -Acetals	290
	7.3.3 Formation of S,S-Acetals	295
	7.3.4 Formation of N,N-Acetals	297
7.4	Addition of Nitrogen Nucleophiles to Carbonyl Compounds in	
	Combination with Subsequent E1 Eliminations: Condensation	••••
	Reactions of Nitrogen Nucleophiles with Carbonyl Compounds	299
	References	303
8	Addition of Hydride Donors and Organometallic Compounds to Carbonyl Compounds	305
8.1	Suitable Hydride Donors and Organometallic Compounds and	
	a Survey of the Structure of Organometallic Compounds	305
8.2	Chemoselectivity of the Addition of Hydride Donors to	
	Carbonyl Compounds	307
8.3	Diastereoselectivity of the Addition of Hydride Donors to	
	Carbonyl Compounds	309
	8.3.1 Diastereoselectivity of the Addition of Hydride Donors	
	to Cyclic Ketones	310

.

	8.3.2	Diastereoselectivity of the Addition of Hydride Donors	
		to α-Chiral Acyclic Carbonyl Compounds	313
	8.3.3	Diastereoselectivity of theAddition of Hydride Donors to	
		β-Chiral Acyclic Carbonyl Compounds	322
8.4	Enanti	oselective Addition of Hydride Donors to	
		nyl Compounds	323
8.5	Additi	on of Organometallic Compounds to Carbonyl Compounds	327
	8.5.1	Simple Addition Reactions of Organometallic Compounds	328
	8.5.2	Enantioselective Addition of Organozinc Compounds	
		to Carbonyl Compounds: Chiral Amplification	333
	8.5.3	Diastereoselective Addition of Organometallic Compounds to	
		Carbonyl Compounds	335
8.6	1,4-Ad	ditions of Organometallic Compounds to	
		nsaturated Ketones	339
	Refere	nces	342
9	Reacti	on of Ylides with Saturated or α , β -Unsaturated	
		nyl Compounds	347
9.1	Ylides/	/Ylenes	347
9.2	Reactions of S Ylides with Saturated Carbonyl Compounds or		
	with N	Aichael Acceptors: Three-Membered Ring Formation	349
	9.2.1	Mechanism for the Formation of Cyclopropanes	
		and Epoxides	349
	9.2.2	Stereoselectivity and Regioselectivity of	
		Three-Membered Ring Formation from S Ylides	351
9.3	Conde	nsation of P Ylides with Carbonyl Compounds:	
	Wittig	Reaction	353
	9.3.1	Nomenclature and Preparation of P Ylides	354
	9.3.2	Mechanism of the Wittig Reaction	355
9.4	Horne	r-Wadsworth-Emmons Reaction	360
	9.4.1	Horner-Wadsworth-Emmons Reactions with	
		Achiral Substrates	361
	9.4.2	Horner-Wadsworth-Emmons Reactions between	
		Chiral Substrates: A Potpourri of Stereochemical Specialties	364
	Refere	ences	372
10	Chemi	stry of the Alkaline Earth Metal Enolates	373
10.1	Basic	Considerations	373
	10.1.1	Notation and Structure of Enolates	373
	10.1.2	Preparation of Enolates by Deprotonation	377
	10.1.3		386

	10.1.4	Survey of Reactions between Electrophiles and Enolates		
		and the Issue of Ambidoselectivity	388	
10.2	Alkyla	tion of Quantitatively Prepared Enolates and Aza-Enolates;		
	Chain-Elongating Syntheses of Carbonyl Compounds and			
	Carboxylic Acid Derivatives			
	10.2.1	Chain-Elongating Syntheses of Carbonyl Compounds	391	
	10.2.2	Chain-Elongating Syntheses of Carboxylic Acid Derivatives	400	
10.3	Hydroxyalkylation of Enolates with Carbonyl Compounds ("Aldol			
	Addition"): Synthesis of β -Hydroxyketones and β -Hydroxyesters		406	
	10.3.1	Driving Force of Aldol Additions and Survey of		
		Reaction Products	406	
	10.3.2	Stereocontrol	408	
10.4	Condensation of Enolates with Carbonyl Compounds:			
	Synthe	sis of Michael Acceptors	414	
	10.4.1	Aldol Condensations	414	
	10.4.2	Knoevenagel Reaction	418	
	10.4.3	A Knoevenagel Reaction "with a Twist"	419	
10.5	Acylation of Enolates		422	
	10.5.1	Acylation of Ester Enolates	422	
	10.5.2	Acylation of Ketone Enolates	425	
10.6	Michael Additions of Enolates			
	10.6.1	Simple Michael Additions	428	
	10.6.2	Tandem Reactions Consisting of Michael Addition		
		and Consecutive Reactions	430	
	References		432	

11 Rearrangements

435

11.1	Nomenclature of Sigmatropic Shifts		
11.2	Molecular Origins for the Occurrence of [1,2]-Rearrangements		
11.3	[1,2]-Rearrangements in Species with a Valence Electron Sextet	438	
	11.3.1 [1,1]-Rearrangements of Carbenium Ions	438	
	11.3.2 [1,2]-Rearrangements in Carbenes or Carbenoids	453	
11.4	[1,2]-Rearrangements without the Occurrence of a Sextet Intermediate	458	
	11.4.1 Hydroperoxide Rearrangements	459	
	11.4.2 Baeyer-Villiger Rearrangements	459	
	11.4.3 Oxidation of Organoborane Compounds	462	
	11.4.4 Beckmann Rearrangement	464	
	11.4.5 Curtius Rearrangement	464	
11.5	Claisen Rearrangement		
	11.5.1 Classical Claisen Rearrangement	467	
	11.5.2 Claisen–Ireland Rearrangements	468	
	References	474	

12	Therm	al Cycloadditions	477	
12.1	Driving Force and Feasibility of One-Step $[2 + 4]$ - and			
	[2 + 2]]-Cycloadditions	477	
12.2	Transition State Structures of Selected One-Step [2 + 4]- and			
	[2 + 2]-Cycloadditions			
	12.2.1	Stereostructure of the Transition States of One-Step [2 + 4]-		
		Cycloadditions	478	
	12.2.2	Frontier Orbital Interactions in the Transition States of		
		One-Step [2 + 4]-Cycloadditions	480	
	12.2.3	Frontier Orbital Interactions in the Transition States of		
		the Unknown One-Step Cycloadditions of Alkenes or		
		Alkynes to Alkenes	486	
	12.2.4	Frontier Orbital Interactions in the Transition State of		
		One-Step [2 + 2]-Cycloadditions Involving Ketenes	486	
12.3	Diels-	Alder Reactions	488	
	12.3.1	Stereoselectivity of Diels-Alder Reactions	489	
	12.3.2	Substituent Effects on Reaction Rates of		
		Diels-Alder Reactions	493	
		Orientation Selectivity of Diels-Alder Reactions	497	
		Simple Diastereoselectivity of Diels-Alder Reactions	500	
12.4	-	-Cycloadditions with Dichloroketene	502 504	
12.5		1,3-Dipolar Cycloadditions		
		1,3-Dipoles	504	
	12.5.2			
		of One-Step 1,3-Dipolar Cycloadditions;		
		Sustmann Classification	505	
	12.5.3		507	
	12.5.4		510	
	12.5.5			
		as Steps in the Ozonolysis of Alkenes	513	
	12.5.6	, 0	515	
	Refere	ences	516	
13	Transi	tion Metal-Mediated Alkenylations, Arylations,		
		lkynylations	519	
13.1		ylation and Arylation of Copper-Bound Organyl Groups	520 522	
13.2		Alkenylation and Arylation of Grignard Compounds		
13.3	Palladium-Catalyzed Alkenylation and Arylation of			
	Organ	ometallic Compounds	526	
	13.3.1	A Prelude: Preparation of Haloalkenes and		
		Alkenylboronic Acid Derivatives, Important Building Blocks		
		for Palladium-Mediated C,C Couplings	526	

xiii

•

		Alkenylation and Arylation of Boron-Bound Groups	529	
	13.3.3	Alkenylation and Arylation of Zinc-Bound		
		Functionalized Groups	534	
	13.3.4	Alkenylation and Arylation of Copper Acetylides	535	
13.4	Alkyny	vlation of Copper Acetylides	538	
13.5	Heck I	Reactions	539	
	Refere	nces	542	
14	Oxidat	ions and Reductions	545	
14.1	Oxidat	Oxidation States of Organic Chemical Compounds, Oxidation		
	Numbe	ers in Organic Chemical Compounds, and Organic		
	Chemi	cal Redox Reactions	545	
14.2	Cross-References to Redox Reactions Already Discussed in			
	Chapte	ers 1–13	550	
14.3	Oxidat	ions	555	
	14.3.1	Oxidations in the Series Alcohol \rightarrow Aldehyde \rightarrow		
		Carboxylic Acid	555	
	14.3.2	Oxidative Cleavages	562	
	14.3.3	Oxidations at Heteroatoms	573	
14.4	Reductions		576	
	14.4.1 14.4.2	Reductions R_{sp3} — $X \rightarrow R_{sp3}$ — H or R_{sp3} — $X \rightarrow R_{sp3}$ — M One-Electron Reductions of Carbonyl Compounds	576	
		and Esters; Reductive Coupling	583	
	14.4.3	Reductions of Carboxylic Acid Derivatives to		
		Alcohols or Amines	588	
	14.4.4	Reductions of Carboxylic Acid Derivatives to Aldehydes	593	
		Reductions of Carbonyl Compounds to Alcohols	593	
	14.4.6	Reductions of Carbonyl Compounds to Hydrocarbons	594	
	14.4.7	Hydrogenation of Alkenes	599	
	14.4.8	Reductions of Aromatic Compounds and Alkynes	604	
	Refere	· ·	608	
			-00	

Index