
J.-P. Banatre S. B. Jones D. Le Metayer

Prospects for
Functional Programming
in Software Engineering

With the cooperation of P. Fradet and A. Sinclair

Springer-Verlag
Berlin Heidelberg New York London Paris
Tokyo Hong Kong Barcelona Budapest



CONTENTS

Chapter 1 About programming environments 1

1.1 Introduction 1

1.2 The software development process 1

1.3 Characteristics of programming environments 3

1.3.1 What should be expected from a programming environment? 3

1.3.2 An example of a programming environment: the CEDAR system 4

1.4 The choice of the appropriate specification language 7

1.4.1 The VDM specification language . . . 8

1.4.2 Other approaches to specification 11

1.5 Refinement of the specification 13

1.5.1 Program development in a conventional language 14

1.5.2 Program development in a functional language 15

1.6 Towards a functional programming environment : 17

1.6.1 The choice of a language 17

1.6.2 Current research on functional programming environments 18

1.7 Overview of the book 19

References 21

Chapter 2 Aspects of functional programming 23

2.1 Introduction 23

2.2 The main characteristics of functional languages 23

2.2.1 Absence of explicit sequencing 24

2.2.2 Absence of the assignment statement 24

2.2.3 Referential transparency 25

2.2.4 Functions: the essence of functional programming 25

2.3 Presentation of two widespread functional languages 30

2.3.1 LISP 30

2.3.2 ML 33

2.4 Brief survey of implementation techniques '36

2.4.1 The SECD machine 36

2.4.2 Graph reduction 37

2.5 Why is functional programming relevant? 37

2.5.1 Semantic simplicity 38

2.5.2 Correctness aspects 40

2.5.3 Program transformation : 42

2.6 The reference language 42

References • 44



VIII

Chapter 3 Program analysis by abstract interpretation 45

3.1 The need for a method of program analysis 45

3.2 The basic principles of abstract interpretation 47

3.2.1 Standard semantics 48

3.2.2 Non-standard semantics and abstract interpretation 49

3.2.3 Application of the abstract interpretation 54

3.3 Restricting the interpretation to finite domains 56

References 57

Chapter 4 Compile-time garbage collection by sharing analysis 59

4.1 Introduction 59

4.2 The target for optimization 60

4.3 Language syntax and semantics 63

4.4 Detection of sharing in functional expressions 65

4.5 Sharing based garbage collection 74

4.6 Finite domains and compile-time garbage collection 80

4.7 Comparison with previous work 84

References 86

Chapter 5 Analysis of functional programs by program transformation 87

5.1 Introduction 87

5.2 Survey of program transformation techniques 88

5.2.1 Program optimization 89

5.2.2 Program synthesis 92

5.2.3 Program compilation 92

5.2.4 Proof of properties of programs '. 93

5.3 Program analysis by program transformation 95

5.4 Time complexity analysis in a first order language 98

5.5 Extension of the analysis to higher order languages 102

5.6 A measure of the potential parallelism of programs 105

5.7 Evaluation of the space complexity of programs 107

5.8 ACE: An automatic complexity evaluator I l l

5.8.1 Organization of the system I l l

5.8.2 Using ACE 112

5.8.3 Some results of analysis 113

5.8.4 Discussion 117

5.9 Conclusion 118

References 119



IX

Chapter 6 From lambda calculus to machine code by program transformation 121

6.1 Introduction 121

6.2 Compilation of the computation rule 122

6.3 Compilation of environment management 126

6.4 Conclusion 133

References 136

Chapter 7 On input and output in functional languages 139

7.1 Introduction 139

7.1.1 Why is there a problem? 139

7.1.2 A historical perspective 141

7.2 Lazy evaluation and streams for input and output 142

7.2.1 Lazy evaluation, streams and processes 142

7.2.2 Interactive programs 147

7.3 An interactive text editor 149

7.4 Repackaging streams: higher order functions and continuations 151

7.4.1 A basic set of interface functions 151

7.4.2 The text editor: an improved version 153

7.4.3 Generalizing the interface functions • 155

7.5 Process networks, parallelism and non-determinism 155

7.5.1 Process networks 156

7.5.2 Parallelism 157

7.5.3 Non-determinism 158

7.6 An operating system structure 160

7.6.1 The network design 160

7.6.2 Low level disk control, and a simple file system ' 165

7.7 Discussion .'. 168

References 170

Chapter 8 For imperative programmers 173

8.1 Introduction 173

8.2 Denotational semantics 174

8.3 Correctness considerations 178

8.3.1 The imperative case 179

8.3.2 The functional case 185

8.3.3 Comparison of the imperative paradigm and the functional paradigm 189

8.4 Efficiency considerations 191

8.5 History-sensitive programming in a purely functional language 195

8.6 Related works 205

8.7 Functional programming is not a mirage 207

References 209


