Nucleic acid and protein sequence analysis a practical approach

Edited by M J Bishop

University of Cambridge, Computer Laboratory, Corn Exchange Street, Cambridge CB2 3QG, UK

C J Rawlings

Biomedical Computing Unit, Imperial Cancer Research Fund, PO Box 123, Lincoln's Inn Fields, London WC2A 3PX, UK

> FACHBEREICH BIOLOGIE (10) der Technischen Hochschule Darmstadi – Bibliothek – D – 6100 Darmstadt / B. R. D. Schnittsochnstraße

Contents

TRODUCTION r Walter Bodmer	1
INTRODUCTION TO COMPUTER HARDWARE AND SYSTEMS SOFTWARE M.J.Bishop	3
Introduction	. 3
The Computer	5
The Peripherals	7
Storage	7
Terminals	8
Printers	9
Digitizers	10
Speech synthesis	10
Computer Communications	10
Asynchronous communications	10
Local area networks	11
Wide area networks	12
Example Systems	13
IBM Personal Computer AT	13
MicroVAX II	15
Sun-3	16
References	17
DNA SEQUENCE ANALYSIS SOFTWARE	19
P.A.Stockwell	
Introduction	19
The Range of Different Programs	19
Sources of software	19
Quality of software	20
Sequence Files	21
Sequential text files	21
Direct access files	23
Sequence symbols	23
Sequence Editing	24
Line editors	25
Screen-orientated editors	25
Hybrid editors	23
Choosing and learning a sequence editor	28
Security against data loss with editors	20
Simulation of artificial sequence constructs	30
	50

S	equence Manipulation	31
	Transcription – RNA to DNA	31
	Complementing sequences	31
	Sequence translation	33
	Finding open reading frames	33
S	Sequence Composition	33
	Base composition	.33
	Dinucleotide frequency	34
	Codon frequency	35
N	Ларрing	35
	Restriction endonuclease mapping	36
	Mapping other sequence features	38
S	Sequence Comparison	40
	DNA/DNA similarities	41
	Protein/protein similarities	41
	Repeats and palindromes	43
8	Sequence Conversion	43
F	Formatting	44
	Simple formatting	44
	Formatting programs	44
F	Acknowledgements	45
F	References	45
3. (• (F	COMPUTERS P. Hoyle	47
Т	ntraduction	47
4	Applications of Computing to the Biological Sciences	47
Å	A Comparison of Commercial Software for IBM Personal	• /
•	Computers	48
F	Hardware requirements	48
Ċ	Customer support	51
	The software	53
(Gene Design with the DNASTAR System	64
	The design objectives	64
	The steps of the gene design	68
	The expression vector	68
	Sites to design into the gene	69
	Designing a DNA sequence that codes for the protein	70
	Designing the restriction sites into the sequence	· 72
	Checking candidate sites for consistency with the protein	75
	Insertion of the gene into the vector	79 ,
	Further investigations	81
	Conclusion	81
A	Acknowledgements	. 82
F	References	82

•

MOLECULAR SEQUENCE DATABASES M.J.Bishop, M.Ginsburg, C.J.Rawlings and R.Wakeford	83
Introduction	83
Growth of sequence databases	83
Co-ordination of sequence data	83
Submission of sequence data to the banks	85
The storage and retrieval problem	86
Supplementary information	87
Sequence features	87
Sequence Symbols	87
Nucleic acid sequence symbols	87
Protein sequence symbols	88
Nucleic Acid Sequence Databases	88
The EMBL data library	91
The GenBank genetic sequence data bank	91
The CODATA recommendations	93
Line structure	93
Difficulties	101
Protein Sequence Databases	102
The NBRF-PIR database	102
The PSD-Kyoto database	103
The NEWAT database	103
The PGtrans and PseqIP collections	103
Other Databases Relevant to Molecular Biology	104
Macromolecular structure databases	104
Enzyme databases	104
Genetic map databases	105
Hybridoma databases	106
Cloning vector databases	106
Culture collection databases (including strains and cell lines)	106
Databases for taxonomy and identification	107
Molecular biology software databases	107
Using Molecular Sequence Databases	107
Organization of data	108
Retrieval of entries	109
Analysis programs	111
Molecular sequence databases as bibliography collections	112
References	112
ONLINE SERVICES	115
McGinsburg	
	110
Introduction	115
Organized Computer Communications	116
Interactive computing and networks	118
	ix

L

	System failures and networks	119
	Establishing the Connection	119
	Terminal emulation and file transfer	120
	Computer facilities at ICRF Clare Hall laboratories	122
	The Major Resources	123
	BIONET	123
	Cambridge	130
	Edinburgh	134
	GenBank	139
	The Howard Hughes Medical Institute human gene mapping	
	library	142
	Protein identification resource	144
	CITI2	144
	References	145
	Appendix	146
6.	APPROACHES TO RESTRICTION MAP DETERMINATION	147
	G.Zehetner, A.Frischauf and H.Lehrach	
	Introduction	147
	Mapping strategies	147
	The Different Approaches to Restriction Map Determination	149
	Indirect methods	149
	Direct approach: partial mapping protocols	156
•	References	164
7.	COMPUTER-AIDED ANALYSIS OF ONE-DIMENSIONAL	
	RESTRICTION FRAGMENT GELS	165
	J.K.Elder and E.M.Southern	
	Introduction	165
	Measurement of Electrophoretic Mobility	165
	Sources of error	165
	Traditional methods	165
	Computer-based methods	166
	Mobility measurement from digital profiles	167
	Correction for inter-track variation	168
	Relative accuracy of manual and computer-based methods for	
	measuring mobility	168
	Methods for Converting Mobility to Fragment Length	169
	Manual and semi-logarithmic methods	169
	Reciprocal method	169
	Relative accuracy of semi-logarithmic and reciprocal methods	170
	Effect of base composition on gel mobility	170
	References	171
	Appendix	171

X

1.5

8. COMPUTER HANDLING OF DNA SEQUENCING PROJECTS 173 R.Staden 173

Introduction	173
The shotgun sequencing strategy	173
Definition of a contig	173
Symbols for uncertainty in gel readings	173
List of programs	174
Equipment	174
Introduction to the Computer Method	176
Objectives of a sequencing project	176
Required operations	177
Gel reading files and files of file names	178
Project databases	178
File and project names	180
How contigs are named	181
Searching for overlaps	181
Overview of computer processing	181
Entering Gel Readings into the Computer	182
Typing gel readings into the computer	182
Entering gel readings using a digitizer	183
Screening Gel Readings Against Vector Sequences	185
Format of vector and consensus sequence files	185
Running the vector screening program	186
Screening Gel Readings Against Restriction Enzyme Sites	186
Format of restriction enzyme recognition sequence files	186
Running the restriction enzyme screening program	186
Starting a New Project Database	187
Automatic Assembly of the Gel Readings	188
Running the automatic assembly program	191
Command Procedures for Screening and Assembling Gel Readings	192
Interactive Operations on a Project Database	194
Opening a project database	195
Displaying the aligned sequences in a contig	196
Examining the relational information	196
Editing gel readings in the database	108
Complementing contigs	200
Entering new get readings into the database	200
Laining contige	201
Coloulating a concensue	203
Carculating a consensus	204
Einding gel readings by name	200
Printing aligned sequences or relational information	200
Examining the quality of a contig	207
Checking the logical consistency of a database	209
Altering the relationships	210
	•

	Safeguarding databases	212
	Highlighting Disagreements in Contigs	212
	Preparing for the highlighting program	212
	Using the highlighting program	213
	Screen Editing of Contigs	213
	Rules for screen editing	214
	Using the screen editing procedure	215
	Searching for Missed Overlaps	216
	Steps used to search for possible missing overlaps	216
	References	217
9.	AUTOMATIC READING OF DNA SEQUENCING GEL	
	AUTORADIOGRAPHS	219
	J.K.Elder and E.M.Southern	
	Introduction	219
	Scanning and Digitization	220
	Scan dimensions	220
	Spatial resolution, amount of data and storage	220
	Optical density range and resolution	220
	Scanners	220
	Analysis	221
	Track boundary detection	221
	Track straightening	224
	Background subtraction	224
	Estimation of band snapes and generation of track density	224
	profiles	224
	Profile registration	220
	Band detection Beading the sequence	227
	Time and cost	220
	A cknowledgements	228
	Deferences	223
	Keletences .	229
10.	IDENTIFYING CODING SEQUENCES	231
	G.D.Stoffilo	
	Introduction	231
	Search by Signal	232
	Consensus sequences	232
	Matrix evaluation of sequences	233
	Alternative matrices	234
	Search by Content	234
	Open reading frames	235
	Base/position preferences	235
	Codon bias	237

	Prokaryotic Coding Regions	238
	Search by signal	238
	Search by content	242
	Combined methods	244
	Eukaryotic Coding Regions	246
	Search by signal	246
	Search by content	251
	Combined methods	255
	Evaluation	256
	Availability of the Programs Used	256
	Conclusions	256
	References	257
11.	SECONDARY STRUCTURE PREDICTION OF RNA	259
	M.Gouy	
	Introduction	259
	The Basics of Secondary Structure Modelling and Stability	
	Computation	259
	Elementary motifs of secondary structure models	259
	Energy models for the computation of folding stabilities	260
	Algorithms for the Prediction of Secondary Structure in RNA	
	Molecules	266
	Combinatorial algorithms	267
	Recursive algorithms	. 269
	Differences between combinatorial and recursive methods	271
1	Overview of two heuristic methods	272
	Use of the Zuker-Stiegler Secondary Structure Prediction Program	272
	Program distribution	273
	Options	273
	Example	274
1	Use of the Ninio Secondary Structure Prediction Program	274
	Program distribution	274
	Options	276
	Example	277
	Detection of Locally Stable Secondary Structures	277
	Computer-aided Secondary Structure Model Building	278
	Secondary Structure Plots and Drawings	281
	Stüber's secondary structure drawing program	281
	Shapiro's displays of secondary structures	281
	An unconventional representation of secondary structures	282
	Concluding Remarks	282
	Acknowledgements	283
	References	283
	Note Added in Proof	284
		xiii

12.	PROTEIN STRUCTURE PREDICTION	285
	W.R.Taylor	
	The Protein Folding Problem	285
	Theoretical importance	285
	Practical importance	285
	Protein Structure	286
	Structure representations	287
	Structural hierarchy	287
	Protein topology	289
	Domains	290
	A Mechanistic Approach to Folding	291
	Energy minimization	291
	Future use of energy minimization	293
	Empirical Methods of Structure Prediction	293
	Secondary structure prediction	294
	Hydrophobic plots	298
	Pattern recognition methods	299
	Accuracy of secondary structure prediction	302
	Prediction of structural classes	305
	Empirical Tertiary Structure Prediction	309
	Secondary structure docking	309
	Finger-print templates	310
	Structure prediction by sequence homology	311
	Structure building by direct sequence homology	316
	Conclusions	317
	A practical approach	317
	The Availability of Programs	321
	References	321
13.	MOLECULAR SEQUENCE COMPARISON AND	
	ALIGNMENT	323
	J.F.Collins and A.F.W.Coulson	
	Introduction	323
	The 'Dot-Plot'	326
	The simple dot-plot	326
	Filtering by translation	329
	Threshold filtering	329
	Reduced alphabet	335
	Similarity scoring	338
	Exhaustive Alignment Algorithms	343
	Introduction and definitions	343
	Scoring schemes	345
	The total alignment algorithm (Type I problem)	346

18		
	The best location algorithm (Type II problem)	346
	The best local similarity algorithm (Type III problem)	348
	Conclusions	349
	Similarity Building Algorithms	350
	Introduction	350
	Practical considerations	352
	Database Searching	353
	Introduction	353
	High speed filters	355
	Application of the exhaustive algorithms	356
	References	358
	14 INFERENCE OF EVOLUTIONARY RELATIONSHIPS	350
	M I Rishon A F Friday and F A Thompson	557
	M.J.Dishop, A.E.I Hudy and E.A. Hompson	
	Introduction	359
	Assessing sequence homology	359
	Inferring an evolutionary relationship	360
	Inferring the nature of an evolutionary process	360
	Inferring the function constraints	360
	The status of evolutionary inferences	360
	Pathways of Genetic Transmission	361
	The evolutionary tree model	361
	More complex topologies	363
	Processes of Genetic Sequence Change	363
	Processes of genetic sequence change as observables	363
	The need to consider generation time	365
	Processes of genetic sequence change inferred from comparative	
	studies	365
	Methods of Inference for Evolutionary Problems	365
	Methods employing heuristic approaches	365
	Methods employing probabilistic models of genetic sequence	
	change	366
	A method of statistical interence	366
	A Simple Model of DNA Sequence Divergence	367
	The exponential failure model	308
	Definition Statistics of Evolutionary Decembers Under a Simple	309
	Model	371
	Computing the likelihood	371
	Worked example	371
	Illustration of the method	375
	limitations of the model	375
	in the absence of deletion/insertion an analytical solution is	5,5
	wobtained	377
	Pairwise divergence times lead to a heuristic phylogenetic tree	378
		XV

Joint Estimates of Phylogeny Under a Simple Model	379
Availability of Programs	383
References	383
GLOSSARY	387
INDEX	397