Superconductor Applications: SQUIDs and Machines Edited by Brian B. Schwartz and Simon Foner Francis Bitter National Magnet Laboratory M. I. T. Cambridge, Massachusetts PLENUM PRESS • NEW YORK AND LONDON Published in cooperation with NATO Scientific Affairs Division Physikalische Bibliothek der Technischen Hochschule Darmstadt TF 1969 ## CONTENTS ## PART I - SQUIDS | CHAPTER 1: | | 1: | THE HISTORICAL CONTEXT OF JOSEPHSON'S DISCOVERY A. B. Pippard | | |------------|----------------------|-----------|---|------------------| | HIS' | HISTORY | | | 1 | | CHA | APTER | 2: | MACROSCOPIC QUANTUM PHENOMENA IN SUPER- CONDUCTORS R. de Bruyn Ouboter | | | I. | INTRO | DUCTI | ON | 21 | | | B_{ullet} | The do | ner Effect and Flux Quantization 2 Josephson Effect ritical Current Through a Double int Contact as a Function of the colied Magnetic Field | 21
26
32 | | | | | | | | II. | AC QU | ANTUN | M EFFECTS | 42 | | | А. | of The ac | sion of the Two-Fluid Interpretation
the London Theory
: Josephson Effect | 42
46 | | Ш. | RESIS' | The Ct | TATES IN WEAK LINK JUNCTIONS urrent-Voltage Characteristics and Resistive-Superconductive Region | 49 | | | В. | The D | a Single Superconducting Weak Link ouble Point Contact in the Resistive perconducting Region, the dc SQUID | 49
5 6 | X | CHA | APTER | 3: SUPERCONDUCTING QUANTUM INTERFERENCE DEVICES FOR LOW FREQUENCY MEASURE- MENTS J. Clarke | | |------|----------------------------|---|---------------------------------| | I. | INTRO | DUCTION | 67 | | II. | SUPER
EFFE | RCONDUCTIVITY AND THE JOSEPHSON | 68 | | | А.
В.
С. | Flux Quantization The Josephson Equations Types of Josephson Junctions, and their Current-Voltage Characteristics | 68
69 | | III. | DC SQ | UID | 71 | | | A.
B.
C.
D. | Operation of the dc SQUID Theory of Noise in the dc SQUID Practical dc SQUIDs: Fabrication and Performance | 71
76
79 | | | E. | Future Improvements in the dc SQUID | 89 | | IV. | RF SQ | 7 | 90 | | | A.
B.
C.
D. | Operation of the rf SQUID | 90
97
97
103
106 | | V. | | S AS MAGNETOMETERS, GRADIOMETERS, EPTOMETERS, AND VOLTMETERS | 108 | | | A.
B.
C.
D.
E. | Flux Transformer
Measurement of Magnetic Field
Measurement of Magnetic Field Gradient
Measurement of Magnetic Susceptibility
Measurement of Voltage | 108
110
112
113
116 | | VI. | PRAC'
DEVIC | TICAL APPLICATIONS OF SQUID-BASED
CES | 118 | | | | | | | CHAPTER 4: | EQUIVALENT CIRCUITS AND | |------------|--------------------------| | | ANALOGS OF THE JOSEPHSON | | | EFFECT | T. A. Fulton | Ι. | INTRO | DDUCTION | 125 | |------|----------------------|---|-----| | II. | SMAL | L JUNCTIONS | 126 | | | Α. | 4 | 126 | | | | Voltage Biased Model | 127 | | | С. | Stewart-McCumber Model | 127 | | | | 1. Circuit equations | 127 | | | | 2. Mechanical analogues | 130 | | | | 3. I-(V) curves | 132 | | | | 4. Plasma oscillations | 136 | | | | 5. Punchthrough | 136 | | | | 6. Interaction with rf currents | 138 | | | D_{\bullet} | Inductively-Connected External Elements | 143 | | | | 1. Circuit and mechanical analogues | 143 | | | | 2. Resistive shunts | 144 | | | | 3. Capacitive shunts | 146 | | | | 4. ac SQUID | 153 | | | \mathbf{E}_{ullet} | The dc SQUID | 155 | | III. | LARG | E JUNCTIONS | 160 | | | Α. | Two-Dimensional Systems | 160 | | | - | 1. Circuit models | 160 | | | | 2. Two-dimensional mechanical analog | 164 | | | В. | One-Dimensional Junctions | 165 | | | - • | 1. Circuit equations | 165 | | | | 2. Mechanical analogue | 165 | | | | 3. Small oscillations and displacements | 166 | | | | 4. Magnetic diffraction and Fiske modes | | | | | for $\ell \leq \lambda_{J}$ | 167 | | | | 5. Junctions having $\ell >> \lambda_{J}$ -vortices and | 101 | | | | critical currents | 168 | | | | 6. Magnetic field behavior for $\ell >> \lambda_{\text{J}}$ | 172 | | | | 7. Vortex motion | 174 | | | | 8. Resonant vortex propagation | 177 | | | | 9. Finite $\langle V \rangle$ behavior for $\ell \gg \lambda_J$ | 179 | | | | 10. Vortex oscillations | 179 | | IV. | CONC | LUSIONS | 182 | | | | | | | CHAPTER | | 5: | SUPERCONDUCTING DEVICES FOR METROLOGY AND STANDARDS R. A. Kamper | | |---------|----------------------|---|---|--| | I. | INTRO | DUCT | ION | 189 | | II. | VOLTA | AGE S | FANDARDS | 190 | | | D.
E.
F.
G. | The J
Pract
The M
The J
Shield
Theor | I Volt and Cells and the Defined Volt asephson Effect and e/h ical Josephson Voltage Standards licrowave Signal Source asephson Junction ling, Filtering, and Tempering etical Uncertainty ant Activities | 190
191
191
193
193
193
196
196 | | III. | CURRI | | OMPARATORS AND RATIO | 198 | | | В.
С. | Induct
Cold I | tive Networks
ive Devices
Resistive Dividers | 198
200
203 | | | D . | | conducting Inductive Current mparators | 205 | | IV. | MEASI
ATTE | | ENTS OF RF POWER AND
ON | 208 | | | Α. | | General Remarks on RF and crowave Measurements | 208 | | | C.
D.
E. | The S
Pract
The M | QUID as an RF Measuring Device ical SQUIDs for RF Metrology leasurement of Attenuation leasurement of Power matic Errors | 210
213
217
219
220 | | v. | THER | MOME | TRY | 227 | | | A.
B.
C.
D. | Noise
Magne | elvin Scale Below 1 K Thermometry with SQUID Sensors etic Thermometry with SQUIDs conducting Fixed Points | 227
228
237
238 | | VI. | MEAS | UREM | ENTS OF FREQUENCY | 238 | | | А.
В. | Oscill | tability of Oscillators
ators with Superconducting | 238 | | | C.
D. | Far I | vity Resonators
nfrared Frequency Synthesis
nt Work | 241
243
244 | CONTENTS xiii HIGH FREQUENCY PROPERTIES CHAPTER 6: | | AND APPLICATIONS OF JOSEPHSON JUNCTIONS FROM MICROWAVES TO FAR-INFRARED R. Adde and G. Vernet | | |----------------------|---|------------| | JUNC | RAL PROPERTIES OF JOSEPHSON
FIONS FOR HIGH FREQUENCY
ICATIONS | 249 | | A_{ullet} | High Frequency Fundamental Properties | | | В. | of the Ideal Josephson Junction The Parallel Impedance of Real | 249 | | • | Josephson Junctions | 249 | | С. | at High Frequencies | 251 | | | 1. Frequency limitation related to the | 0 = 3 | | | physical mechanism | 251 | | | 2. Geometrical structure and coupling | 257 | | | 3. Thermal effects 4. Noise | 258
258 | | D_{ullet} | . · · · · · · · · · · · · · · · · · · · | 259 | | ₽• | 1. Wide band detection | 259 | | | 2. Narrow band detection (linear) | 260 | | E. | The Josephson Junction and Parametric | 200 | | - -♥ | Amplification | 261 | | \mathbf{F}_{ullet} | The Real JJ Analyzed with the RSJ Model | 263 | | - • | 1. Voltage source model | 263 | | | 2. The current source model | 264 | | | 3. An important example: the Josephson heterodyne mixer with an external | | | • | oscillator | 266 | | G_{ullet} | Noise | 268 | | | 1. Physical origin of fluctuations in | | | | Josephson junctions | 268 | | | 2. Josephson junction response in the | | | | presence of fluctuations | 272 | | H_{ullet} | Noise Temperature, Minimum Detectable | | | * | Temperature, NEP | 275 | | | 1. Noise temperatures | 275 | | - | 2. System sensitivity | 277 | | I. | Coupling and Impedance Matching | 279 | | | 1. General remarks | 279 | | | 2. Impedance matching | 279 | | | 3. Signal input coupling | 281 | | II. | | YSIS AND PERFORMANCES OF HIGH- | 0.04 | |------|------------------------|---|---| | | FREQU | JENCY JOSEPHSON DEVICES | 284 | | • | A_{ullet} | Generation of Radiation | 285 | | | в. | Bolometer | 286 | | | | 1. Bolometer characteristics | 286 | | | | 2. SNS and superconducting transition | 225 | | | | edge bolometers | 287 | | | ~ | 3. Comparison of devices | 290 | | | C. | Video Detection | 290 | | | | 1. Junction quadratic response | 290 | | | | 2. Voltage response in the general case | 291 | | | | 3. Noise equivalent power | 293 | | | | 4. Discussion of experimental results and comparison with other video | | | | | detectors | 293 | | | D_ullet | Heterodyne Detection | 295 | | | | 1. External local oscillator | 296 | | | | 2. Internal local oscillator | 302 | | | | 3. Discussion of the results and compara- | | | | | tive performances of other mixers | 306 | | | Ε. | Parametric Amplification | 311 | | | · | 1. Parametric amplification with self- | | | | | pumped JJ | 312 | | | | 2. Externally pumped JJ parametric | | | | | amplifier | 314 | | | | 3. Discussion | 315 | | | \mathbf{F}_{\bullet} | Conclusions | 315 | | | | | | | CHA | APTER | | | | | | JUNCTIONS | | | | | B. T. Ulrich and T. Van Duzer | | | I. | INTRO | DUCTION | 321 | | II. | FABR | ICATION TECHNOLOGY | 323 | | | | | 20.0 | | | Α. | | $\begin{array}{c} 323 \\ 324 \end{array}$ | | | B. | | $324 \\ 327$ | | | | Electron Lithography This Film Densition and Ian Etching | 321
329 | | | D. | Thin-Film Deposition and Ion Etching | 349 | | III. | SAND | WICH-TYPE JUNCTIONS | 332 | | | Α. | Oxide-Barrier_Junctions | 333 | | | В. | | 337 | | | C. | an ta an araba ta an araba | 337 | CONTENTS xv | IV. | JUNCTIONS WITH COPLANAR ELECTRODES | 341 | |-----------------------|--|-------------------| | | A. Variable-Composition Junctions | 342 | | | B. Semiconductor Bridge
C. Microbridges | $\frac{346}{347}$ | | | • | | | V.] | POINT CONTACTS | 350 | | | | | | CHA] | PTER 8: BIOMAGNETISM S. J. Williamson, L. Kaufman and D. Brenner | | | I. | INTRODUCTION | 355 | | II. | FORWARD AND INVERSE PROBLEMS | 357 | | III. | SQUID MEASUREMENT TECHNIQUES | 360 | | IV. | MAGNETOCARDIOGRAM | 371 | | v_{\bullet} | FETAL MAGNETOCARDIOGRAM | 383 | | VI. | MAGNETOMYOGRAM | 384 | | VII. | MAGNETO-OCULOGRAM | 386 | | VIII. | MAGNETOENCEPHELOGRAM | 387 | | IX_\bullet | VISUALLY EVOKED FIELD | 392 | | X_{\circ} | EXPECTATIONS | 396 | | CHA | PTER 9: A PROGRESS REPORT ON COMMERCIAL SUPERCONDUCTING INSTRUMENTS IN THE UNITED STATES | | | | M. B. Simmonds | | | Ι | INTRODUCTION | 403 | | II. | SQUID SENSORS | 404 | | III. | LABORATORY PROBES | 405 | | IV. | GEOPHYSICAL MAGNETOMETERS | 406 | | V_{\bullet} | MAGNETIC ANOMALY DETECTORS | 407 | | xvi | | CONTENT | |---------------|--|---------------------------------| | VI. | BIOMEDICAL MAGNETOMETERS | 409 | | VII. | SAMPLE MEASURING INSTRUMENTS | 411 | | VIII. | SHIELDED ENVIRONMENTS | 412 | | IX. | CONCLUSIONS | 413 | | CHA | PTER 10: RESISTIVE DEVICES J. G. Park | | | I. | INTRODUCTION | 415 | | Π_{ullet} | THE 'CORRESPONDING' SQUID | 417 | | III. | THE RSQUID AND ITS 'CORRESPONDING' SQUID | 422 | | IV. | BEHAVIOR WHEN MODULATION CURRENTS I and i_{m} ARE ABSENT | 426 | | · | A. Stable and Unstable Equilibrium B. Deviations from the Standard Behavior C. The Form of I_k (Θ_j) D. Fluctuations about Equilibrium E. Behavior when I is small | 426
427
427
430
430 | | V. | EXPERIMENTS WITH EXTERNAL CURRENT I (AC OR DC) | 431 | | VI_{ullet} | APPLICATIONS OF RSQUIDs | 437 | | | A. Types of RSQUIDs B. Picovoltmeters C. The RSQUID Noise Thermometer D. Heat Current Measurement | 437
439
441
443 | | СНА | PTER 11: "HOT SUPERCONDUCTORS": THE PHYSICS AND APPLICATIONS OF NONEQUILIBRIUM SUPERCONDUCTIVITY JJ. Chang and D. J. Scalapino | | | I. | INTRODUCTION | 447 | | II. | RELAXATION PROCESSES AND THE KINETIC EQUATIONS | 454 | | | | |--------------|-----| | CONTENTS | xvi | | CONTENTS | A11 | | III. | | DES AND THE ROTHWARF- | 468 | |------|------------------|---|------------| | IV. | | S OF THE BOLTZMANN EQUATIONS | 473 | | СНА | PTER 12: | COMPUTER APPLICATIONS OF JOSEPHSON JUNCTIONS P. Wolf | | | I. | HISTORICA | AL NOTES | 487 | | II. | THE JOSE | PHSON JUNCTION AS A
G DEVICE | 487 | | III. | DEVICE F | ABRICATION | 489 | | IV. | CIRCUITS | | 489 | | | A. Log
B. Mer | ic Circuits
nory Circuits | 489
490 | | СНА | PTER 13: | PROGRAMS ON SMALL-SCALE SUPERCONDUCTING DEVICES IN CANADA J. A. Blackburn | | | PRO | GRAMS | | 495 | | CHA | PTER 14: | PROGRAMS ON SMALL-SCALE
SUPERCONDUCTING DEVICES
IN FRANCE
R. Adde | | | PRO | GRAMS | | 501 | | CHA | PTER 15: | PROGRAMS ON SMALL-SCALE
SUPERCONDUCTING DEVICES
IN GERMANY
S. Erné | | | PRO | GRAMS | | 505 | | xviii | | CONTENTS | |----------------|--|----------| | CHAPTER 16: | PROGRAMS ON SMALL-SCALE
SUPERCONDUCTING DEVICES
IN ITALY
M. Cerdonio | | | PROGRAMS | | 509 | | CHAPTER 17: | PROGRAMS ON SMALL-SCALE
SUPERCONDUCTING DEVICES
IN THE NETHERLANDS
R. de Bruyn Ouboter | | | PROGRAMS | | 513 | | CHAPTER 18: | PROGRAMS ON SMALL-SCALE
SUPERCONDUCTING DEVICES
IN THE UNITED KINGDOM
J. G. Park | | | PROGRAMS | | 515 | | CHAPTER 19: | PROGRAMS ON SMALL-SCALE SUPERCONDUCTING DEVICES IN THE UNITED STATES R. Brandt and E.A. Edelsack | | | I. SUMMARY | | 521 | | II. INTRODUC | CTION | 521 | | III. BIOMEDIC | CAL | 525 | | IV. METROLO | OGY | 527 | | V. GEOPHYS | GEOPHYSICAL | | | VI. DETECTION | DETECTION AND RADIATION | | | VII. DIGITAL I | DIGITAL PROCESSING | | | VIII. DEVICE P | II. DEVICE PROPERTIES | | | IX. TRENDS | | 540 | ## PART II - MACHINES | CHAPTER 20: | LARGE-SCALE APPLICATIONS OF | |-------------|-----------------------------| | | SUPERCONDUCTIVITY | | | G. Bogner | | I. | INTRO | DUCTION | 547 | |------|--------------------|---|--------------------------| | II. | SUPEI
MAGN | RCONDUCTING MATERIALS AND ETS | 549 | | | A.
B. | Introduction
High-Field Superconductors | 549
550 | | | С. | Superconducting materials Stabilized High Field Superconductors Cryostatic stabilization Adiabatic stabilization | 550
553
554
554 | | | | 3. Dynamic stability Conductors for dc and ac Magnets Irradiation Effects in Composite | 554
555 | | | \mathbf{F}_ullet | Superconductors
General Design Aspects of Super- | 565 | | | F • | conducting Magnets | 567 | | | | 1. Intrinsically stable coils | 567 | | | | 2. Fully or cryostatically stabilized coils | 572 | | | G. | 3. Current leads and coil protection Superconducting Magnets for Laboratory | 574 | | | | Application | 575 | | | н .
І. | Magnets for High Energy Physics Superconducting Magnets for Fusion | 579 | | | | Reactors and MHD Generators | 586 | | | | 1. Fusion reactors | 586 | | | _ | 2. MHD generators | 594 | | | J . | Superconducting Magnets for Inductive
Energy Storage | 596 | | | К. | Superconducting Magnets for Magnetic Separation | 604 | | III. | LEVIT | TATED VEHICLES WITH SUPERCON- | | | | | ING MAGNETS | 608 | | | А.
В. | Basic Features of the Electrodynamic | 608 | | | C. | Flight
Principle of the Electrodynamic | 609 | | | _ | Levitation System | 609 | | - | D. | Various Lift and Guidance Systems | 610 | | | E. | Damping Sustains | 613 | | | F.
G. | Propulsion Systems On-Board Cooling Systems | 615
617 | | | | | | | xx | | | CONTENTS | |-----|------------------------|--|---------------------------| | | H.
I. | Magnetic Shielding of the Passengers
Electrodynamic Levitation Projects
1. FRG - the Erlangen test carrier | 619
61 9 | | | | and track 2. The Japanese National Railway | 619 | | | | magnetic levitation project | 627 | | | | 3. The Canadian Maglev-project4. Work on magnetic levitation in | 632 | | | | Great Britain 5. The US program on magnetic | 633 | | | · | levitation | 633 | | IV. | IV. ELECTRIC MACHINES | | 636 | | | Α. | Introduction | 636 | | | | Limits of Conventional Machines | 636 | | | C. | Superconducting Machines: General | | | | | Remarks | 638 | | | \mathbf{D}_{ullet} | DC Machines | 640 | | | | Heteropolar machines | 640 | | | | 2. Homopolar machines | 645 | | | \mathbf{E}_{\bullet} | Synchronous Machines | 654 | | | | 1. Technical limits of conventional | | | | | turbogenerators | 656 | | | | 2. Potential advantages of supercon- | | | | | ducting generators | 656 | | | | 3. Basic construction of supercon- | | | | | ducting generators | 657 | | | | 4. Cooling system | 662 | | | | 5. Armature winding (stator) | 666 | | | | 6. Machine screening | 667 | | • | | 7. Electrical operating behavior and | | | | | characteristic data | 667 | | | | 8. Economic considerations | 669 | | | | 9. Superconducting turbine-generator | | | | | projects | 670 | | V. | SUPE | RCONDUCTING CABLES | 672 | | | A_{ullet} | Introduction | 672 | | · | B_{ullet} | Superconducting Cable Concepts | 673 | | | | 1. Mechanical construction | 673 | | | | 2. Conductor configurations | 673 | | | | 3. Comparison between superconducting direct current and alternating | | | | | current cables | 675 | | | C. | - J-6 F- | 677 | | | D_{\bullet} | | 678 | | | | 1. Direct current superconductors | 678 | | | | 2. Alternating current superconductors | 67 9 | | CONTENTS | xxi | |----------|-----| | | | | E. Cable Core F. Electrical Insulation G. Cable Cooling H. Cable Terminations I. Superconducting Cable Projects J. The Economics of Superconducting Cables K. Future Development of Superconducting | 684
687
694
699
701
705 | |---|--| | Cables | 709 | | SUBJECT INDEX | | | PART I - SQUIDs | 719 | | PART II - MACHINES | 731 |