Superconductor Applications: SQUIDs and Machines

Edited by

Brian B. Schwartz and Simon Foner

Francis Bitter National Magnet Laboratory M. I. T. Cambridge, Massachusetts

PLENUM PRESS • NEW YORK AND LONDON
Published in cooperation with NATO Scientific Affairs Division

Physikalische Bibliothek der Technischen Hochschule Darmstadt TF 1969

CONTENTS

PART I - SQUIDS

CHAPTER 1:		1:	THE HISTORICAL CONTEXT OF JOSEPHSON'S DISCOVERY A. B. Pippard	
HIS'	HISTORY			1
CHA	APTER	2:	MACROSCOPIC QUANTUM PHENOMENA IN SUPER- CONDUCTORS R. de Bruyn Ouboter	
I.	INTRO	DUCTI	ON	21
	B_{ullet}	The do	ner Effect and Flux Quantization 2 Josephson Effect ritical Current Through a Double int Contact as a Function of the colied Magnetic Field	21 26 32
II.	AC QU	ANTUN	M EFFECTS	42
	А.	of The ac	sion of the Two-Fluid Interpretation the London Theory : Josephson Effect	42 46
Ш.	RESIS'	The Ct	TATES IN WEAK LINK JUNCTIONS urrent-Voltage Characteristics and Resistive-Superconductive Region	49
	В.	The D	a Single Superconducting Weak Link ouble Point Contact in the Resistive perconducting Region, the dc SQUID	49 5 6

X

CHA	APTER	3: SUPERCONDUCTING QUANTUM INTERFERENCE DEVICES FOR LOW FREQUENCY MEASURE- MENTS J. Clarke	
I.	INTRO	DUCTION	67
II.	SUPER EFFE	RCONDUCTIVITY AND THE JOSEPHSON	68
	А. В. С.	Flux Quantization The Josephson Equations Types of Josephson Junctions, and their Current-Voltage Characteristics	68 69
III.	DC SQ	UID	71
	A. B. C. D.	Operation of the dc SQUID Theory of Noise in the dc SQUID Practical dc SQUIDs: Fabrication and Performance	71 76 79
	E.	Future Improvements in the dc SQUID	89
IV.	RF SQ	7	90
	A. B. C. D.	Operation of the rf SQUID	90 97 97 103 106
V.		S AS MAGNETOMETERS, GRADIOMETERS, EPTOMETERS, AND VOLTMETERS	108
	A. B. C. D. E.	Flux Transformer Measurement of Magnetic Field Measurement of Magnetic Field Gradient Measurement of Magnetic Susceptibility Measurement of Voltage	108 110 112 113 116
VI.	PRAC' DEVIC	TICAL APPLICATIONS OF SQUID-BASED CES	118

CHAPTER 4:	EQUIVALENT CIRCUITS AND
	ANALOGS OF THE JOSEPHSON
	EFFECT

T. A. Fulton

Ι.	INTRO	DDUCTION	125
II.	SMAL	L JUNCTIONS	126
	Α.	4	126
		Voltage Biased Model	127
	С.	Stewart-McCumber Model	127
		1. Circuit equations	127
		2. Mechanical analogues	130
		3. I-(V) curves	132
		4. Plasma oscillations	136
		5. Punchthrough	136
		6. Interaction with rf currents	138
	D_{\bullet}	Inductively-Connected External Elements	143
		1. Circuit and mechanical analogues	143
		2. Resistive shunts	144
		3. Capacitive shunts	146
		4. ac SQUID	153
	\mathbf{E}_{ullet}	The dc SQUID	155
III.	LARG	E JUNCTIONS	160
	Α.	Two-Dimensional Systems	160
	-	1. Circuit models	160
		2. Two-dimensional mechanical analog	164
	В.	One-Dimensional Junctions	165
	- •	1. Circuit equations	165
		2. Mechanical analogue	165
		3. Small oscillations and displacements	166
		4. Magnetic diffraction and Fiske modes	
		for $\ell \leq \lambda_{J}$	167
		5. Junctions having $\ell >> \lambda_{J}$ -vortices and	101
		critical currents	168
		6. Magnetic field behavior for $\ell >> \lambda_{\text{J}}$	172
		7. Vortex motion	174
		8. Resonant vortex propagation	177
		9. Finite $\langle V \rangle$ behavior for $\ell \gg \lambda_J$	179
		10. Vortex oscillations	179
IV.	CONC	LUSIONS	182

CHAPTER		5:	SUPERCONDUCTING DEVICES FOR METROLOGY AND STANDARDS R. A. Kamper	
I.	INTRO	DUCT	ION	189
II.	VOLTA	AGE S	FANDARDS	190
	D. E. F. G.	The J Pract The M The J Shield Theor	I Volt and Cells and the Defined Volt asephson Effect and e/h ical Josephson Voltage Standards licrowave Signal Source asephson Junction ling, Filtering, and Tempering etical Uncertainty ant Activities	190 191 191 193 193 193 196 196
III.	CURRI		OMPARATORS AND RATIO	198
	В. С.	Induct Cold I	tive Networks ive Devices Resistive Dividers	198 200 203
	D .		conducting Inductive Current mparators	205
IV.	MEASI ATTE		ENTS OF RF POWER AND ON	208
	Α.		General Remarks on RF and crowave Measurements	208
	C. D. E.	The S Pract The M	QUID as an RF Measuring Device ical SQUIDs for RF Metrology leasurement of Attenuation leasurement of Power matic Errors	210 213 217 219 220
v.	THER	MOME	TRY	227
	A. B. C. D.	Noise Magne	elvin Scale Below 1 K Thermometry with SQUID Sensors etic Thermometry with SQUIDs conducting Fixed Points	227 228 237 238
VI.	MEAS	UREM	ENTS OF FREQUENCY	238
	А. В.	Oscill	tability of Oscillators ators with Superconducting	238
	C. D.	Far I	vity Resonators nfrared Frequency Synthesis nt Work	241 243 244

CONTENTS xiii

HIGH FREQUENCY PROPERTIES

CHAPTER 6:

	AND APPLICATIONS OF JOSEPHSON JUNCTIONS FROM MICROWAVES TO FAR-INFRARED R. Adde and G. Vernet	
JUNC	RAL PROPERTIES OF JOSEPHSON FIONS FOR HIGH FREQUENCY ICATIONS	249
A_{ullet}	High Frequency Fundamental Properties	
В.	of the Ideal Josephson Junction The Parallel Impedance of Real	249
•	Josephson Junctions	249
С.	at High Frequencies	251
	1. Frequency limitation related to the	0 = 3
	physical mechanism	251
	2. Geometrical structure and coupling	257
	3. Thermal effects 4. Noise	258 258
D_{ullet}	. · · · · · · · · · · · · · · · · · · ·	259
₽•	1. Wide band detection	259
	2. Narrow band detection (linear)	260
E.	The Josephson Junction and Parametric	200
- -♥	Amplification	261
\mathbf{F}_{ullet}	The Real JJ Analyzed with the RSJ Model	263
- •	1. Voltage source model	263
	2. The current source model	264
	3. An important example: the Josephson heterodyne mixer with an external	
•	oscillator	266
G_{ullet}	Noise	268
	1. Physical origin of fluctuations in	
	Josephson junctions	268
	2. Josephson junction response in the	
	presence of fluctuations	272
H_{ullet}	Noise Temperature, Minimum Detectable	
*	Temperature, NEP	275
	1. Noise temperatures	275
-	2. System sensitivity	277
I.	Coupling and Impedance Matching	279
	1. General remarks	279
	2. Impedance matching	279
	3. Signal input coupling	281

II.		YSIS AND PERFORMANCES OF HIGH-	0.04
	FREQU	JENCY JOSEPHSON DEVICES	284
•	A_{ullet}	Generation of Radiation	285
	в.	Bolometer	286
		1. Bolometer characteristics	286
		2. SNS and superconducting transition	225
		edge bolometers	287
	~	3. Comparison of devices	290
	C.	Video Detection	290
		1. Junction quadratic response	290
		2. Voltage response in the general case	291
		3. Noise equivalent power	293
		4. Discussion of experimental results and comparison with other video	
		detectors	293
	D_ullet	Heterodyne Detection	295
		1. External local oscillator	296
		2. Internal local oscillator	302
		3. Discussion of the results and compara-	
		tive performances of other mixers	306
	Ε.	Parametric Amplification	311
	·	1. Parametric amplification with self-	
		pumped JJ	312
		2. Externally pumped JJ parametric	
		amplifier	314
		3. Discussion	315
	\mathbf{F}_{\bullet}	Conclusions	315
	 		
CHA	APTER		
		JUNCTIONS	
		B. T. Ulrich and T. Van Duzer	
I.	INTRO	DUCTION	321
II.	FABR	ICATION TECHNOLOGY	323
			20.0
	Α.		$\begin{array}{c} 323 \\ 324 \end{array}$
	B.		$324 \\ 327$
		Electron Lithography This Film Densition and Ian Etching	321 329
	D.	Thin-Film Deposition and Ion Etching	349
III.	SAND	WICH-TYPE JUNCTIONS	332
	Α.	Oxide-Barrier_Junctions	333
	В.		337
	C.	an ta an araba ta an araba	337

CONTENTS xv

IV.	JUNCTIONS WITH COPLANAR ELECTRODES	341
	A. Variable-Composition Junctions	342
	B. Semiconductor Bridge C. Microbridges	$\frac{346}{347}$
	•	
V.]	POINT CONTACTS	350
CHA]	PTER 8: BIOMAGNETISM S. J. Williamson, L. Kaufman and D. Brenner	
I.	INTRODUCTION	355
II.	FORWARD AND INVERSE PROBLEMS	357
III.	SQUID MEASUREMENT TECHNIQUES	360
IV.	MAGNETOCARDIOGRAM	371
v_{\bullet}	FETAL MAGNETOCARDIOGRAM	383
VI.	MAGNETOMYOGRAM	384
VII.	MAGNETO-OCULOGRAM	386
VIII.	MAGNETOENCEPHELOGRAM	387
IX_\bullet	VISUALLY EVOKED FIELD	392
X_{\circ}	EXPECTATIONS	396
CHA	PTER 9: A PROGRESS REPORT ON COMMERCIAL SUPERCONDUCTING INSTRUMENTS IN THE UNITED STATES	
	M. B. Simmonds	
Ι	INTRODUCTION	403
II.	SQUID SENSORS	404
III.	LABORATORY PROBES	405
IV.	GEOPHYSICAL MAGNETOMETERS	406
V_{\bullet}	MAGNETIC ANOMALY DETECTORS	407

xvi		CONTENT
VI.	BIOMEDICAL MAGNETOMETERS	409
VII.	SAMPLE MEASURING INSTRUMENTS	411
VIII.	SHIELDED ENVIRONMENTS	412
IX.	CONCLUSIONS	413
CHA	PTER 10: RESISTIVE DEVICES J. G. Park	
I.	INTRODUCTION	415
Π_{ullet}	THE 'CORRESPONDING' SQUID	417
III.	THE RSQUID AND ITS 'CORRESPONDING' SQUID	422
IV.	BEHAVIOR WHEN MODULATION CURRENTS I and i_{m} ARE ABSENT	426
·	 A. Stable and Unstable Equilibrium B. Deviations from the Standard Behavior C. The Form of I_k (Θ_j) D. Fluctuations about Equilibrium E. Behavior when I is small 	426 427 427 430 430
V.	EXPERIMENTS WITH EXTERNAL CURRENT I (AC OR DC)	431
VI_{ullet}	APPLICATIONS OF RSQUIDs	437
	 A. Types of RSQUIDs B. Picovoltmeters C. The RSQUID Noise Thermometer D. Heat Current Measurement 	437 439 441 443
СНА	PTER 11: "HOT SUPERCONDUCTORS": THE PHYSICS AND APPLICATIONS OF NONEQUILIBRIUM SUPERCONDUCTIVITY JJ. Chang and D. J. Scalapino	
I.	INTRODUCTION	447
II.	RELAXATION PROCESSES AND THE KINETIC EQUATIONS	454

 	
CONTENTS	xvi
CONTENTS	A11

III.		DES AND THE ROTHWARF-	468
IV.		S OF THE BOLTZMANN EQUATIONS	473
СНА	PTER 12:	COMPUTER APPLICATIONS OF JOSEPHSON JUNCTIONS P. Wolf	
I.	HISTORICA	AL NOTES	487
II.	THE JOSE	PHSON JUNCTION AS A G DEVICE	487
III.	DEVICE F	ABRICATION	489
IV.	CIRCUITS		489
	A. Log B. Mer	ic Circuits nory Circuits	489 490
СНА	PTER 13:	PROGRAMS ON SMALL-SCALE SUPERCONDUCTING DEVICES IN CANADA J. A. Blackburn	
PRO	GRAMS		495
CHA	PTER 14:	PROGRAMS ON SMALL-SCALE SUPERCONDUCTING DEVICES IN FRANCE R. Adde	
PRO	GRAMS		501
CHA	PTER 15:	PROGRAMS ON SMALL-SCALE SUPERCONDUCTING DEVICES IN GERMANY S. Erné	
PRO	GRAMS		505

xviii		CONTENTS
CHAPTER 16:	PROGRAMS ON SMALL-SCALE SUPERCONDUCTING DEVICES IN ITALY M. Cerdonio	
PROGRAMS		509
CHAPTER 17:	PROGRAMS ON SMALL-SCALE SUPERCONDUCTING DEVICES IN THE NETHERLANDS R. de Bruyn Ouboter	
PROGRAMS		513
CHAPTER 18:	PROGRAMS ON SMALL-SCALE SUPERCONDUCTING DEVICES IN THE UNITED KINGDOM J. G. Park	
PROGRAMS		515
CHAPTER 19:	PROGRAMS ON SMALL-SCALE SUPERCONDUCTING DEVICES IN THE UNITED STATES R. Brandt and E.A. Edelsack	
I. SUMMARY		521
II. INTRODUC	CTION	521
III. BIOMEDIC	CAL	525
IV. METROLO	OGY	527
V. GEOPHYS	GEOPHYSICAL	
VI. DETECTION	DETECTION AND RADIATION	
VII. DIGITAL I	DIGITAL PROCESSING	
VIII. DEVICE P	II. DEVICE PROPERTIES	
IX. TRENDS		540

PART II - MACHINES

CHAPTER 20:	LARGE-SCALE APPLICATIONS OF
	SUPERCONDUCTIVITY
	G. Bogner

I.	INTRO	DUCTION	547
II.	SUPEI MAGN	RCONDUCTING MATERIALS AND ETS	549
	A. B.	Introduction High-Field Superconductors	549 550
	С.	 Superconducting materials Stabilized High Field Superconductors Cryostatic stabilization Adiabatic stabilization 	550 553 554 554
		3. Dynamic stability Conductors for dc and ac Magnets Irradiation Effects in Composite	554 555
	\mathbf{F}_ullet	Superconductors General Design Aspects of Super-	565
	F •	conducting Magnets	567
		1. Intrinsically stable coils	567
		2. Fully or cryostatically stabilized coils	572
	G.	3. Current leads and coil protection Superconducting Magnets for Laboratory	574
		Application	575
	н . І.	Magnets for High Energy Physics Superconducting Magnets for Fusion	579
		Reactors and MHD Generators	586
		1. Fusion reactors	586
	_	2. MHD generators	594
	J .	Superconducting Magnets for Inductive Energy Storage	596
	К.	Superconducting Magnets for Magnetic Separation	604
III.	LEVIT	TATED VEHICLES WITH SUPERCON-	
		ING MAGNETS	608
	А. В.	Basic Features of the Electrodynamic	608
	C.	Flight Principle of the Electrodynamic	609
	_	Levitation System	609
-	D.	Various Lift and Guidance Systems	610
	E.	Damping Sustains	613
	F. G.	Propulsion Systems On-Board Cooling Systems	615 617

xx			CONTENTS
	H. I.	Magnetic Shielding of the Passengers Electrodynamic Levitation Projects 1. FRG - the Erlangen test carrier	619 61 9
		and track 2. The Japanese National Railway	619
		magnetic levitation project	627
		3. The Canadian Maglev-project4. Work on magnetic levitation in	632
		Great Britain 5. The US program on magnetic	633
	·	levitation	633
IV.	IV. ELECTRIC MACHINES		636
	Α.	Introduction	636
		Limits of Conventional Machines	636
	C.	Superconducting Machines: General	
		Remarks	638
	\mathbf{D}_{ullet}	DC Machines	640
		 Heteropolar machines 	640
		2. Homopolar machines	645
	\mathbf{E}_{\bullet}	Synchronous Machines	654
		1. Technical limits of conventional	
		turbogenerators	656
		2. Potential advantages of supercon-	
		ducting generators	656
		3. Basic construction of supercon-	
		ducting generators	657
		4. Cooling system	662
		5. Armature winding (stator)	666
		6. Machine screening	667
•		7. Electrical operating behavior and	
		characteristic data	667
		8. Economic considerations	669
		9. Superconducting turbine-generator	
		projects	670
V.	SUPE	RCONDUCTING CABLES	672
	A_{ullet}	Introduction	672
·	B_{ullet}	Superconducting Cable Concepts	673
		1. Mechanical construction	673
		2. Conductor configurations	673
		3. Comparison between superconducting direct current and alternating	
		current cables	675
	C.	- J-6 F-	677
	D_{\bullet}		678
		1. Direct current superconductors	678
		2. Alternating current superconductors	67 9

CONTENTS	xxi

 E. Cable Core F. Electrical Insulation G. Cable Cooling H. Cable Terminations I. Superconducting Cable Projects J. The Economics of Superconducting Cables K. Future Development of Superconducting 	684 687 694 699 701 705
Cables	709
SUBJECT INDEX	
PART I - SQUIDs	719
PART II - MACHINES	731