AIRCRAFT DYNAMICS AND AUTOMATIC CONTROL

DUANE MCRUER IRVING ASHKENAS DUNSTAN GRAHAM

PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

1973

H

6

Technische Hochsdate Damstaar Fachbereich Mechanik Bibliothek Inv.-Nr. <u>BM</u> 93/76 CONTENTS

.

0

,

Prefa	ice	v
List	of Figures	xii
List	of Tables	xxii
1. Intro	oduction and Antecedents	3
1-1.	Outline of the Volume: A Guide for the Reader	9
1-2.	A Definition of Flight Control	13
1-3.	Why Feedback?	17
1-4.	Early History of the Subject of Aircraft Dynamics	21
1-5.	Early History of Automatic Flight Control	26
1-6.	The Joining of Control Technology and Dynamic Analysis	42
2. Math	ematical Models of Linear System Elements	51
2-1.	Introduction	51
2-2.	Laplace Transformation	52
2-3.	Response Determination	61
2-4.	Simplified Methods to Obtain an Approximate $f(t)$ from	
	Its Unfactored Transform $F(s)$	64
2-5.	Partial Fraction Coefficient Ratios	71
2-6.	Weighting Function and Modal Response Coefficients	76
2-7.	Time-Vector Representations for the Weighting Function	80
2-8.	Transfer Function Models	86
2-9.	Representations of Transfer Functions	92
2-10.	The Combining of Transfer Functions	106
3. Feed	back System Analysis	110
3-1.	Introduction	110
3-2.	Conventional and Three-Dimensional Root Locus	112
3-3 .	Bode Root Locus and Generalized Bode Diagram	135
3-4.	Simplified System Characteristics and Literal Approximate	
	Factors	153
3-5.	Analysis of Multiloop Vehicular Control Systems	163
3-6.	Sensitivity of Closed-Loop Roots to System Parameter	
	Variations	177

	CO	Ν	Τ	E	N	7	S
--	----	---	---	---	---	---	---

4.	Vehic	ele Equations of Motion	203
	4-1.	Introduction	203
•	4-2.	Newton's Second Law and Reference Frames	204
	4-3.	Expansion of the Inertial Forces and Moments	209
	4-4.	Expansion of the Gravity Force	220
	4-5.	Linearization of the Inertial and Gravitational	
		Components	233
	4-6.	Expansion of the Aerodynamic Forces and Moments	239
	4-7.	Expansion of the Direct Thrust Force	252
	4-8.	Complete Linearized Equations of Motion	255
	4-9.	Description of the Dimensional and Nondimensional	
		Stability Axis Derivatives	262
		v	
5.	Long	itudinal Dynamics	296
	5-1.	Introduction	296
	5.2.	Recapitulation and Further Simplification of ⁶ the	
		Longitudinal Equations of Motion	297
	5-3.	Control-Input Transfer Functions	298
	5-4.	Example Transfer Functions, Bode Forms, and Time	
		Responses for a Conventional Airplane	301
	5-5.	Two Degree of Freedom, Short Period Approximations	307
	5-6.	Three Degree of Freedom Phugoid Approximations	309
	5-7.	Hovering Equations of Motion, Control-Input Transfer	
		Functions, and Modal Responses	316
	5-8.	Example Transfer Functions, Bode Forms, and Time	
		Responses for a Hovering Vehicle	319
	5-9.	Gust-Input Transfer Functions	324
	5-10.	Coupling Numerators	327
	5-11	Approximate Factors	334
	5-12.	Approximate Modal Response Ratios	346
c	Tata	nal Drugowicz	959
0.	Late	rai Dynamics	999
	6-1.	Introduction	353
	6-2.	Recapitulation and Further Simplification of the Lateral	
		Equations of Motion	353
	6-3.	Control-Input Transfer Functions	354
	6-4.	Example Transfer Functions, Bode Forms, and Time	
		Responses for a Conventional Airplane	357
	6-5.	Two Degree of Freedom Dutch Roll Approximations	367
	6-6.	Three Degree of Freedom Dutch Roll Approximations	371
	6-7.	Three Degree of Freedom Spiral and Roll Subsidence	
		Approximations	374

.

θ

. ζ **x**)

Ø

	6-8. 6-9.	Commentary on Approximate Equations of Motion Hovering Equations, Control-Input Transfer Functions,	377
	0 0.	and Time Responses	380
	6-10.	Gust-Input Transfer Functions	389
	6-11.	Coupling Numerators	398
	6-12.	Approximate Factors	398
	6-13.	Approximate Modal Response Ratios	414
7.	Elem	entary Longitudinal Feedback Control	419
	7-1.	Feedback of Pitch Angle and Pitch Rate to the Elevator	419
	7-2.	Feedback of Speed Error to the Elevator	438
	7-3.	Feedback of Angle of Attack to the Elevator	443
	7-4.	Feedback of Normal Acceleration to the Elevator	446
	7-5.	Feedback of Altitude to the Elevator	453
8.	Elem	entary Lateral Feedback Control	458
	8-1.	Feedback of Bank Angle and Rolling Velocity to the	
		Ailerons	458
	8-2.	Feedback of Other Quantities to the Ailerons	472
	8-3.	Feedback of Heading Angle to the Rudder	474
	8-4.	Feedback of Yawing Velocity to the Rudder	475
	8-5.	Feedback of Sideslip to the Rudder	482
	8-6.	Feedback of Lateral Acceleration to the Rudder	483
9.	Requ	irements, Specifications, and Testing	491
	9-1.	Introduction: The System Design Process	491
	9-2.	Mission Phases and Operational Requirements	493
	9-3.	An Approach to Implied Requirements for System Design	495
	9-4.	General Feedback Control System Considerations in	
		Flight Control	500
	9-5.	Bases for Compromise in Selecting Crossover Region	518
	9-6.	Specifications and Testing	529 ·
10.	Inpu	ts and System Performance Assessment	537
	10-1.	Introduction	537
	10-2.	Response to Deterministic Inputs	541
	10-3.	The Description of Random Processes	549
	10-4.	Analytical Description and Catalog of Special Random	
		Processes	565
	10-5.	Properties of Random Processes with Gaussian Amplitude	
		Distributions	574
	10-6.	Response of Linear Systems to Random Inputs	578
	10-7.	Computer Methods	587

CO	NT	TEN	TS

0

11. Multiloop Flight Control Systems	600		
11-1. Introduction	600		
· 11-2. Essential Feedbacks	601		
11-3. Longitudinal Approach Control System	623		
11-4. Lateral-Directional Multiloop Control System	660		
11-5. Conclusion	683		
APPENDICES A. Stability Derivatives and Transfer Function Factors for Representative Aircraft B. Elements of Probability			
Automatic Control	769		
INDEX	775		
: 4			