VIm B

Fiber-Reinforced Cement Composites

Perumaisamy N. Balaguru

Professor of Civil Engineering Rutgers, The State University New Brunswick, New Jersey

Surendra P. Shah

Walter P. Murphy Professor of Civil Engineering Director, NSF Center for Advanced Cement-Based Materials Northwestern University Evanston, Illinois

der Techa. Hechschule Darmstadt

Inv.-Nr. 8859

McGraw-Hill, Inc.

New York St. Louis San Francisco Auckland Bogotá Caracas Lisbon London Madrid Mexico Milan Montreal New Delhi Paris San Juan São Paulo Singapore Sydney Tokyo Toronto

Contents

Ack	nowledgments xvii	
Chapte	er 1. Introduction	1
1.1	Historical Development	2
1.2	Synopsis of the Topics Discussed in the Book	8
1.3	Relevant Specifications, Journals, and Special Publications	10
	1.3.1 Specifications and recommended procedures	10
	1.3.2 Journals and special publications in the area of FRC	11
1.4	Research Needs	13
1.5	References	13
Chapte	er 2. Interaction between Fibers and Matrix	17
2.1	Fiber Interaction with Homogenous Uncracked Matrix	18
2.2	Fiber Interaction in Cracked Matrix	20
	2.2.1 Experimental techniques for evaluating	
	fiber-matrix bond	21
	2.2.2 Typical experimental results	24
2.3	Interpretation of Test Data and Analytical Models	27
2.4	Composition of the Matrix	31
2.5	References	33
Chapt	er 3. Basic Concepts and Mechanical Properties: Tension	37
3.1	Basic Concepts: Strong Brittle Fibers in Ductile Matrix	37
3.2	Strong Fibers in a Brittle Matrix	38
3.3	Tensile Behavior of Fiber-Cement Composites	41
3.4	Experimental Evaluation of Conventional Fiber-Cement Composites	44
	3.4.1 Tensile stress-displacement response	45
	3.4.2 Localization of deformation	46
	3.4.3 Optical crack-width measurements	47
	3.4.4 Residual deformation	47
3.5	Elastic Response in Tension	49
	3.5.1 Composite stiffness	49
	3.5.2 Fiber orientation and length efficiency factors	50
	3.5.3 Critical fiber volume fraction	52

Preface

xiii

Contents

3.6	Prediction of Composite Strength Based	
	on Empirical Approaches	53
3.7	Experimental Evaluation of High–Volume Fraction Fiber Composites	55
	3.7.1 / Interaction effects of fibers and matrix	56
	3.7.2 Quantitative image analysis	57
	3.7.3 Laser holographic interferometry	60
2.0	3.7.4 Acoustic emission	61 64
3.0	Fracture Mechanics Approach	64 64
	3.8.1 Historical perspective 3.8.2 The compliance approach	66
20	Applications Based on Linear Elastic Fracture Mechanics	68
3.9	3.9.1 Single-fiber pull-out problem	68
	3.9.2 Uniaxial tensile specimen	70
	3.9.3 Comparisons with experimental results	71
3.10	Nonlinear Fracture Mechanics	72
	3.10.1 Two-parameter fracture model of Jeng and Shah	73
	3.10.2 R-curve formulations	74
	3.10.3 R-curve formulation for cement-based composites	75
	3.10.4 Comparison of theoretical and experimental results	78
3.11	Other Models for the Prediction of Failure Stress	79
3.12	References	81
Chapter	4. Basic Concepts and Mechanical Properties: Bending	85
4.1	Mechanism of Fiber Contribution to Bending	85
4.2	Flexural Toughness	87
	4.2.1 Techniques for toughness measurement	88
	4.2.2 Methods of deflection measurement and their influence on	
-	toughness index	93
	4.2.3 Effect of fiber type and volume fraction on toughness	95
	4.2.4 Effect of specimen size and notch	96
	4.2.5 Possible new techniques for toughness measurement	97
	Prediction of Load-Deflection Response	99
4.4	References	100
. .		
Chapter	5. Properties of Constituent Materials	101
5.1	Cement	101
5.2	Aggregates	103
5.3	Water and Water-Reducing Admixtures	104
5.4	Mineral Admixtures	105
5.5	Other Chemical Admixtures	105
5.6	Special Cements	106
5.7	Metallic Fibers	106
	5.7.1 Fiber geometry and manufacturing	
	methods	106
5.8	Polymeric Fibers	108
	5.8.1 Acrylic	108
	5.8.2 Aramid	109
	5.8.3 Nylon	109
	5.8.4 Polyester	109
	5.8.5 Polyethylene	109
	5.8.6 Polypropylene	109

_

vi

5.9	Carbon Fibers	110		
5.10	0 Glass Fibers			
5.11	Naturally Occurring Fibers	110		
	5.11.1 Akwara fibers	110		
-	5.11.2 Bamboo fibers	112		
	5.11.3 Coconut fibers	112		
	5.11.4 Flax and vegetable fibers	112		
	5.11.5 Jute fibers	112		
	5.11.6 Sisal fibers	113		
	5.11.7 Sugar cane bagasse fibers	113		
	5.11.8 Wood fibers (cellulose fibers)	113 113		
	5.11.9 Other fibers	113		
5.12	References	114		
Chapte	er 6. Mixture Proportions, Mixing and Casting Procedures	115		
6.1	Mix Proportions for FRC Containing Coarse Aggregates 6.1.1 Special requirements for FRC with steel	116		
	fibers (SFRC)	118		
	6.1.2 Mixes with lightweight aggregates	118		
	6.1.3 Special requirements for concrete reinforced			
	with polymeric fibers	119		
6.2	Mixing and Casting Procedures	120		
	6.2.1 Concrete reinforced with steel fibers	120		
	6.2.2 Concrete reinforced with polymeric fibers	123		
6.3	References	124		
Chante	er 7. Properties of Freshly Mixed FRC Containing Coarse			
Aggre		125		
Aggre	yales			
7.1	Workability Tests	125		
	7.1.1 Slump cone test	126		
	7.1.2 Inverted slump cone test	126		
	7.1.3 V-B test	126		
7.2	Tests for Air Content, Yield, and Unit Weight	127		
7.3	Steel Fiber-Reinforced Concrete	128		
7.4	Polymeric Fiber-Reinforced Concrete	139		
7.5	Other Fibers	143		
7.6	Relations Between Slump, V-B Time, and Inverted Slump Cone Time,			
	and Their Significance	143		
7.7	References	146		
	· · ·			
Chant	er 8 Properties of Hardened FRC	149		

apu		
8.1	Behavior under Compression: Steel Fibers	149
8.2	Behavior under Compression: Polymeric Fibers	152
8.3	Behavior under Tension: Steel Fibers	154
8.4	Behavior under Tension: Polymeric Fibers	155
8.5	Behavior under Flexure: Steel Fibers	155
	8.5.1 Influence of fiber volume fraction	156
	8.5.2 Influence of fiber length	157
	8.5.3 Influence of fiber geometry	160

viii Contents

	8.5.4 Influence of specimen size and notch	
	on toughness indices	160
	8.5.5 Influence of matrix composition	161
	Behavior under Flexure: Polymeric Fibers	162
8.7	Behavior under Shear, Torsion and Bending:	
	Steel and Polymeric Fibers	166
8.8	Unit Weight, Abrasion Resistance, Friction and Skid Resistance,	
	Thermal and Electrical Conductivity: Steel and Polymeric Fibers	166
8.9	Freeze-Thaw Durability	167
8.10	Moisture Absorption and Permeability	175
8.11	References	177
Chapter	9. FRC under Fatigue and Impact Loading	179
9.1	Fatigue Loading	179
	9.1.1 Basics of fatigue testing	180
	9.1.2 Fatigue behavior of steel fiber-reinforced concrete	183
	9.1.3 Fatigue behavior of polymeric	
	fiber-reinforced concrete	186
	9.1.4 Beams reinforced with continuous bars and discrete fibers	189
9.2	Impact Loading	189
	9.2.1 Test methods: drop-weight test	191
	9.2.2 Test methods: instrumented impact tests	193
	9.2.3 Impact resistance of steel fiber-reinforced concrete: drop-	405
	weight test	195
	9.2.4 Impact resistance of polymeric	
	fiber—reinforced concrete: drop-weiaht test	196
•	9.2.5 Impact resistance of steel fiber-reinforced concrete:	190
	instrumented impact tests	199
	9.2.6 Impact resistance of polymeric fiber-reinforced concrete:	133
	instrumented impact tests	210
	9.2.7 Impact resistance of beams reinforced with	2.0
	continuous bars and discrete polypropylene fibers:	
	instrumented impact tests	211
9.3	References	213
	· · · · · · · · · · · · · · · · · · ·	
Chapte	er 10. Creep, Shrinkage, and Long-Term Performance	215
	Orean and Christeans of Steel	
10.1		015
	Fiber-Reinforced Concrete 10.1.1 Creep behavior of steel fiber-reinforced concrete	215 216
	10.1.2 Shrinkage behavior of steel fiber-reinforced concrete	210 228
10.2	Creep and Shrinkage of Polymeric Fiber-Reinforced Concrete	232
		232
10.3	10.3.1 Corrosion of steel fibers	232
	10.3.1 Corrosion of steel libers 10.3.2 Durability of polymeric fibers	233
10 /	References	230
10.4		24/
Chapt	er 11. Plastic and Early Drying Shrinkage	249
11.1	Plastic Shrinkage	250
	11.1.1.1 Test procedures to evaluate the plastic shrinkage-reduction	
	potential of fibers	250

	44 4 0	Contribution of polymeric fibers to plastic shrinkage	
	11.1.2	crack reduction	251
	11 1 2	Contributions of steel fibers to plastic shrinkage	201
	11.1.0	crack reduction	255
	11.1.4	Theoretical models for the prediction of plastic	
		shrinkage crack widths	256
11.2	Drvina	Shrinkage	256
		to drying shrinkage crack reduction	257
	11.2.2	Contribution of polymeric fibers to drying shrinkage	
		crack reduction	263
	11.2.3	Contribution of steel fibers to drying shrinkage	
		crack reduction	266
	11.2.4	Theoretical model for the prediction of crack widths	
		under restrained drying shrinkage conditions	270
11.3	Referer	ices	277
Chante	r 12 Fil	ber-Reinforced Shotcrete	279
Unapic			2.0
12.1	Constit	uent Materials	279
		Cement	280
		Aggregates	280
		Additives and admixtures	281
	. —	Fibers	282
12.2		Proportions	282
		Steel fiber shotcrete	282
		Polymeric fiber shotcrete	283
12.3		ng and Mixing	284
		Dry process Wet process	284 285
10.4		•	285
12.4			288
12.5	Rebour		288
		Factors affecting rebound of fibers Comparison of plain and fiber shotcrete	288
		Techniques to reduce rebound	289
12.6		al Properties	205
12.0		Test methods	289
		Compressive strength	290
		Flexural strength	295
		Flexural toughness and load-deflection behavior	296
	12.6.5	· · · · · · · · · · · · · · · · · · ·	298
		Impact strength	299
		Shrinkage	300
		Bond strength between shotcrete and rock surface	301
		Fatigue strength	301
	12.6.10	Permeability and porosity	301
	12.6.11	Freeze-thaw durability and air-void characteristics	302
	12.6.12	Pull-out strength for measuring quality	
		of in-place concrete	303
12.7			303
	12.7.1	Slope stabilization	303
	12.7.2		304
		Shell structures	305
		Repairs	305
	12.7.5	Miscellaneous applications	306

ix

x	Contents	
---	----------	--

12.8	Design Procedures	306
	12.8.1 Empirical design	306
	12.8.2 Analytical models	306
	12.8.3 Precautions	307
12.9	References	307
Chapter	13. Glass Fiber-Reinforced Concrete	311
13.1	Development of GFRC	312
	13.1.1 Alkali-resistant glass fiber	313
	13.1.2 Modified-cement matrices	313
13.2	Constituent Materials of GFRC:	
	Special Requirements	313
	13.2.1 Cement	314
	13.2.2 Aggregates	314
	13.2.3 Admixtures	314
	13.2.4 Coatings	315
	13.2.5 Decorative face mixes	315
13.3	Fabrication of GFRC	316
	13.3.1 Forms	~ 316
	13.3.2 Mixture proportions	316
	13.3.3 Fabrication using the spray-up process	317
	13.3.4 Fabrication using the premix process	318
	13.3.5 Surface finish	318
13.4	Quality Control Tests	319
	13.4.1 Equipment calibration tests	319
	13.4.2 Thickness test	320
	13.4.3 Slurry consistency slump test	320
	13.4.4 Wet density test	321
	13.4.5 Fiber content (wash-out test)	321
	13.4.6 Tests for hardened GFRC	321
13.5	Physical Properties	322
	13.5.1 Behavior under tensile and flexural loads: short- and long-term behaviors	322
	13.5.2 Compressive strength	343
	13.5.3 Shear strength	344
	13.5.4 Elastic modulus	345
	13.5.5 Creep and shrinkage	346
	13.5.6 Freeze-thaw resistance	349
	13.5.7 Moisture absorption and density	351
	13.5.8 Fire resistance	351
	13.5.9 Other physical properties	351
13.6	Design Procedures	352
	13.6.1 Design loads and load combinations	353
13.7		354
	13.7.1 Design and fabrication of steel	
	stud frame	354
	13.7.2 Flex-anchor connections	357
	13.7.3 Gravity anchor connections	357
	13.7.4 Anchor details for seismic areas	358
	13.7.5 Attaching a GFRC panel to a steel	
	stud frame	359
13.8	Applications	359
13.9	References	362

١

Chapter	14. Thin-Sheet Products	365
14.1	Thin Sheets Reinforced with Polymeric Fibers, Fabrics, or Meshes	367
	14.1.1 Polypropylene fibers	. 367
	14.1.2 Polypropylene film	372
	14.1.3 Woven polypropylene fabrics	377
	14.1.4 Comparison of filament, film and woven fabrics	382
14.0	14.1.5 Other polymeric fibers	382
14.2	Thin Sheets Reinforced with Carbon Fibers 14.2.1 Materials and mixture proportions	384 384
	14.2.2 Workability of plastic (fresh) mix	385
	14.2.3 Mechanical properties	386
	14.2.4 Durability and drying shrinkage	389
	14.2.5 Water absorption	390
	14.2.6 Effect of a curing regime on engineering properties	391
	14.2.7 Recent developments	394
14.3	Thin Sheets Reinforced with Cellulose Fibers	394
	14.3.1 Materials and mixture proportions	395
	14.3.2 Properties of sheets made using the premixing process	396
	14.3.3 Properties of sheets made using the dewatering process	397
14.4	14.3.4 Long-term durability of cellulose fibers Thin Sheets Reinforced with Other Natural Fibers	406
		409
14.5	Comparative Behavior and Use of Thin-Sheet Products Made Using Various Fibers	410
14.6	References	410
14.0	References	410
Chapter	15. Slurry-Infiltrated Fiber Concrete	413
15.1	Preparation of SIFCON	413
	Constituent Materials and Mix Proportions	
10.2	15.2.1 Fibers	415 415
	15.2.2 Matrix	415
	15.2.3 Mix proportions	416
15.3	Engineering Properties	416
	15.3.1 Unit weight	416
	15.3.2 Behavior in compression	416
	15.3.3 Behavior in tension	424
	15.3.4 Behavior under flexural loading	429
	15.3.5 Behavior in shear	434
	15.3.6 Drying shrinkage strain	437
	15.3.7 Resistance to freezing and thawing	440
	15.3.8 SIFCON under fatigue loading 15.3.9 Resistance to impact and blast loading	441 441
15.4	SIFCON with Steel Bar Reinforcement	441
-	Applications	441
10.0	15.5.1 Security vaults	441
	15.5.2 Explosive-resistant containers	444
	15.5.3 A repair material for structural components	444
	15.5.4 Bridge rehabilitation	446
	15.5.5 Pavement rehabilitation	446
	15.5.6 Precast products	446
	15.5.7 Refractory applications	446
S	15.5.8 Potential new applications	446
15.6	References	447

xi

xii Contents

Chapter 16. The Use of FRC for Structural Components	449
16.1 Behavior under Flexure	450
16.2 Behavior under Shear	454
16.3 Behavlor under Torsion	458
16.4 Behavior under Combined Bending, Shear and Torsion	461
16.5 Deep Beams and Corbels	464
16.6 Beam-Column Connections	467
16.7 Columns	472
16.8 Prestressed Concrete Beams	477
16.9 Design Concepts	478
16.9.1 Flexure	479
16.9.2 Shear	481
16.9.3 Combined bending, shear, and torsion	481
16.9.4 Columns	482 482
16.10 Nonlinear Analysis and Computation of Ductility 16.10.1 Stress-strain behavior in compression	482 483
16.10.2 Stress-strain behavior in axial tension	485
16.10.3 Bond characteristics of reinforcement bars embedded	
in fiber-reinforced concrete	487
16.11 The Behavior of FRC under Biaxial Loading	487
16.12 References	489
Chapter 17. Field Performance and Case Studies	493
17.1 Field Performance and Lessons Learned	494
. 17.2 Case Studies: Pavements	495
17.2.1 Airport pavements	495
17.2.2 Highway and street pavements	503 505
17.2.3 Industrial floors and pavements used by heavy trucks 17.3 Bridge Deck Overlays	505
17.5 Bridge Deck Overlays	507
17.4 Patching 17.5 Other Cast-in-Place Applications	508
17.5 Other Cast-In-Prace Applications	508
17.5 The use of FRC in Frecast Form	509
	208

Appendix 513 Illustration Source Notes 515 Index 523