Engineering Mechanics of Composite Materials

Isaac M. Daniel

Departments of Civil and Mechanical Engineering, Northwestern University, Evanston, IL, U.S.A.

Ori Ishai

Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, Israel

Fachbereich Materialwissenschaft der Techn. Hochschule Darmstadt

Inv.-Nr.: 1302

New York Oxford OXFORD UNIVERSITY PRESS 1994

Contents

1.	Intro	duction	3
	1.1	Definition and Characteristics	3
	1.2	Historical Development	4
	1.3	Overview of Advantages and Limitations of	
		Composite Materials	5
		1.3.1 Micromechanics	8
		1.3.2 Macromechanics	8
		1.3.3 Mechanical Characterization	8
		1.3.4 Structural Design and Optimization	8
		1.3.5 Fabrication Technology	9
		1.3.6 Maintainability, Serviceability, and Durability	9
		1.3.7 Cost Effectiveness	9
	1.4	Significance and Objectives of Composite Materials	
		Science and Technology	10
	1.5	Current Status and Future Prospects	10
2.	Basic	.Concepts and Characteristics	12
	2.1	Structural Performance of Conventional Materials	12
	2.2	Geometric and Physical Definitions	13
		2.2.1 Type of Material	13
		2.2.2 Homogeneity	13
		2.2.3 Heterogeneity or Inhomogeneity	14
		2.2.4 Isotropy	14
		2.2.5 Anisotropy/Orthotropy	14
	2.3	Material Response	15
	2.4	Types and Classification of Composite Materials	19
	2.5	Lamina, Laminate; Characteristics and Configurations	21
	2.6	Scales of Analysis; Micromechanics, Macromechanics	23
	2.7	Basic Lamina Properties	25
	2.8	Degrees of Anisotropy	26
	2.9	Constituent Materials and Properties	27
		2.9.1 Fibers	27
		2.9.2 Matrices	30
	2.10	Properties of Typical Composite Materials	31

x Contents

3,	Elas	tic Behavior of Unidirectional Lamina	37
	3.1	Stress-Strain Relations	37
		3.1.1 General Anisotropic Material	37
		3.1.2 Specially Orthotropic Material	41
		3.1.3 Transversely Isotropic Material	42
		3.1.4 Orthotropic Material under Plane Stress	45
		3.1.5 Isotropic Material	47
	3.2	Relations between Mathematical and Engineering Constants	48
	3.3	Stress-Strain Relations for Thin Lamina	54
	3.4	Transformation of Stress and Strain	55
	3.5	Transformation of Elastic Parameters	57
	3.6	Transformation of Stress-Strain Relations in Terms of	
		Engineering Constants	61
	3.7	Transformation Relations for Engineering Constants	64
	3.8	Micromechanical Predictions of Elastic Constants	70
		3.8.1 Scope and Approaches	70
		3.8.2 Longitudinal Properties	72
		3.8.3 Transverse Modulus	73
		3.8.4 In-Plane Shear Modulus	74
4.	Stre	ngth of Unidirectional Lamina	85
	4.1	Micromechanics of Failure; Failure Mechanisms	85
		4.1.1 Longitudinal Tension	85
		4.1.2 Longitudinal Compression	90
		4.1.3 Transverse Tension	93
		4.1.4 Transverse Compression	99
		4.1.5 In-Plane Shear	100
	4.2	Macromechanical Strength Parameters	102
	4.3	Macromechanical Failure Theories	106
	4.4	Maximum Stress Theory	108
	4.5	Maximum Strain Theory	111
	4.6	Deviatoric Strain Energy Theory (Tsai-Hill)	114
	4.7	Interactive Tensor Polynomial Theory (Tsai-Wu)	116
	4.8	Computational Procedure for Determination of	
		Lamina Strength	120
	4.9	Applicability of Various Failure Theories	126
5.	Elas	stic Behavior of Multidirectional Laminates	142
•	5.1	Basic Assumptions	142
	5.2	Strain-Displacement Relations	143
	5.3	Stress-Strain Relations of Layer within a Laminate	145
	5.4	Force and Moment Resultants	146
	5.5	General Load-Deformation Relations: Laminate Stiffnesses	149
	5.6	Inversion of Load-Deformation Relations:	
		Laminate Compliances	152
	5.7	Symmetric Laminates	153
	. • •	5.7.1 Symmetric Laminates with Isotropic Layers	155

Contents xi

		5.7.2 Symmetric Laminates with Specially Orthotropic Layers	
		(Symmetric Crossply Laminates)	156
		5.7.3 Symmetric Angle-Ply Laminates	157
	5.8	Balanced Laminates	157
		5.8.1 Antisymmetric Laminates	158
		5.8.2 Antisymmetric Crossply Laminates	159
		5.8.3 Antisymmetric Angle-Ply Laminates	161
	5.9	Orthotropic Laminates: Transformation of Laminate	
		Stiffnesses and Compliances	162
	5.10	Quasi-Isotropic Laminates	164
	5.11	Design Considerations	166
	5.12	Laminate Engineering Properties	168
	5.13	Computational Procedure for Determination of Engineering	
		Elastic Properties	177
	5.14	Comparison of Elastic Parameters of Unidirectional and	
		Angle-Ply Laminates	178
	5.15	Carpet Plots for Multidirectional Laminates	181
6.	Hygi	othermal Effects	189
	6.1	Introduction	189
		6.1.1 Physical and Chemical Effects	189
		6.1.2 Effects on Mechanical Properties	190
		6.1.3 Hygrothermoelastic (HTE) Effects	190
	6.2	Hygrothermal Effects on Mechanical Behavior	190
	6.3	Coefficients of Thermal and Moisture Expansion of	
		Unidirectional Lamina	194
	6.4	Hygrothermal Strains in Unidirectional Lamina	198
	6.5	Hygrothermoelastic Stress-Strain Relations	200
	6.6	Hygrothermoelastic Strain-Stress Relations	203
	6.7	Physical Significance of Hygrothermal Forces	204
	6.8	Hygrothermal Stress-Strain Relations	206
	6.9	Coefficients of Thermal and Moisture Expansion of	
		Multidirectional Laminates	206
	6.10	Coefficients of Thermal and Moisture Expansion of	
		Balanced/Symmetric Laminates	207
		Hygrothermoelastic Isotropy and Stability	209
	6.12	Coefficients of Thermal Expansion of Unidirectional and	
		Multidirectional Carbon/Epoxy Laminates	212
	6.13	Hygrothermoelastic Stress Analysis of	
		Multidirectional Laminates	213
		Residual Stresses	215
		Warpage	221
	6.16	Computational Procedure for Hygrothermoelastic Analysis of	
		Multidirectional Laminates	225
7.	Stre	ss and Failure Analysis of Multidirectional Laminates	234
	7.1	Introduction	234

xii Contents

	7.2	Types of Failure	235
	7.3	Stress Analysis and Safety Factors for First-Ply Failure of	
		Symmetric Laminates (In-Plane Loading)	235
	7.4	Strength Components for First-Ply Failure of Symmetric	
		Laminates	238
	7.5	Computational Procedure for Stress and Failure Analysis of	
		General Multidirectional Laminates (First-Ply Failure)	244
	7.6	Comparison of Strengths of Unidirectional and Angle-Ply	
		Laminates (First-Ply Failure)	246
	7.7	Carpet Plots for Strength of Multidirectional Laminates	
		(First-Ply Failure)	248
	7.8	Effect of Hygrothermal History on Strength of	
		Multidirectional Laminates (First-Ply Failure; Tsai-Wu	
		Criterion)	250
	7.9	Computational Procedure for Stress and Failure Analysis of	
		Multidirectional Laminates under Combined Mechanical and	
		Hygrothermal Loading (First-Ply Failure; Tsai-Wu Criterion)	252
	7.10	Micromechanics of Progressive Failure: Stiffness Reduction	254
		Progressive and Ultimate Laminate Failure	259
		Analysis of Progressive Laminate Failure	261
		Interlaminar Stresses and Strength of Multidirectional	
		Laminates: Edge Effects	265
		7.13.1 Introduction	265
		7.13.2 Angle-Ply Laminates	265
		7.13.3 Crossply Laminates	266
		7.13.4 Effects of Stacking Sequence	268
		7.13.5 Interlaminar Strength	272
	7.14	Interlaminar Fracture Toughness	275
		Design Methodology for Structural Composite Materials	278
		Illustration of Design Process: Design of a Pressure Vessel	281
		7.16.1 Aluminum Reference Vessel	282
		7.16.2 Crossply $[0_m/90_n]_s$ Laminates	283
		7.16.3 Angle-Ply $[\pm \theta]_{ns}$ Laminates	283
		7.16.4 $[90/\pm\theta]_{ns}$ Laminates	285
		7.16.5 $[0/\pm\theta]_{ns}$ Laminates	286
		7.16.6 Quasi-Isotropic $[0/\pm 45/90]_{ns}$ Laminates	286
		7.16.7 Summary and Comparison of Results	286
	7.17	Ranking of Composite Laminates	288
8.	Expe	erimental Methods for Characterization and Testing of	
	_	posite Materials	299
		Introduction	299
	8.2	Characterization of Constituent Materials	300
		8.2.1 Fiber Characterization	300
		8.2.2 Matrix Characterization	304
	8.3	Physical Characterization of Composite Materials	306
		8.3.1 Density	306

Contents	xiii
ontents	AIII

	8.3.2 Fiber Volume Ratio	306
	8.3.3 Void Volume Ratio (Porosity)	307
	8.3.4 Coefficients of Thermal Expansion	309
	8.3.5 Coefficients of Moisture Expansion	310
8.4	Determination of Tensile Properties of	
	Unidirectional Lamina	312
8.5	Determination of Compressive Properties of	
	Unidirectional Lamina	316
8.6	Determination of Shear Properties of Unidirectional Lamina	321
8.7	Determination of Interlaminar Strength	331
	8.7.1 Interlaminar Shear Strength	331
	8.7.2 Interlaminar Tensile Strength	333
8.8	Determination of Interlaminar Fracture Toughness	336
	8.8.1 Mode I Testing	336
	8.8.2 Mode II Testing	339
	8.8.3 Mixed Mode Testing	343
	8.8.4 Mode III Testing	345
8.9	Biaxial Testing	347
	8.9.1 Introduction	347
	8.9.2 Off-Axis Uniaxial Test	347
	8.9.3 Crossbeam Sandwich Specimen	350
	8.9.4 Flat Plate Specimen	352
	8.9.5 Thin-Wall Tubular Specimen	352
8.10	Characterization of Composites with Stress Concentrations	357
	8.10.1 Introduction	357
	8.10.2 Laminates with Holes	357
	8.10.3 Laminates with Cracks	364
8.11	Summary and Discussion	368
Ans	wers to Selected Problems	. 379
Inde	x	385