Ermittlung von Belastungsgrenzen an Bodensubstraten zur weitergehenden Mischwasserbehandlung in Retentionsbodenfiltern

vom Fachbereich Architektur/Raum- und Umweltplanung/Bauingenieurwesen der Technischen Universität Kaiserslautern zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigte Dissertation

Vorgelegt von

Dipl.-Ing. Renata Woźniak

Kaiserslautern 2008 (D 386)

Dekan: Prof. Dr. G. Troeger-Weiß

Vorsitzender der Prüfungskommission: Prof. Dr. K. Tobias

1. Berichterstatter: Prof. Dr.-Ing. T.G. Schmitt

2. Berichterstatter: Univ.Prof. DI Dr.nat.techn. Raimund Haberl

Tag der mündlichen Prüfung: 16. Mai 2007

INHALT

1	Einleitung	1
	1.1 Veranlassung	1
	1.2 Zielsetzung	2
	1.3 Aufbau der Arbeit	3
2	Kenntnisstand zur Abwasserbehandlung in Bodenfiltern	4
	2.1 Themaabgrenzung und Begriffsdefinitionen	
	2.1.1 Weitergehende Mischwasserbehandlung	
	2.1.2 Einsatzgebiete der Bodenfilter	
	2.1.3 Konstruktion und Betrieb von RBF	
	2.2 Reinigungsprozesse in Retentionsbodenfiltern	
	2.2.1 Rückhalt von Feststoffen	
	2.2.2 Rückhalt von gelösten Stoffen	
	2.2.3 Biomasse und Bioaktivität	
	2.3 Zur Belastungsgrenze der Bodenfilter	
	2.3.1 Kolmation in Vertikalfiltern	
	2.3.2 Filtergeschwindigkeit	
	2.3.3 Stofflimitierung am Biofilm	
3	Bodenphysikalische und – chemische Grundlagen	
	3.1 Eigenschaften der Filtersubstrate	
	3.1.1 Kornform und Kornoberfläche	
	3.1.2 Korngefüge und Porosität	
	3.2 Wasserhaushalt und –bewegung in Böden	
	3.2.1 Infiltration	
	3.2.2 Entwässerung	
	3.3 Zusammensetzung und Dynamik der Bodenluft	
	3.3.1 Sauerstoffhaushalt in Bodenfiltern	
	3.3.2 Sauerstoffeintragswege	
	3.4 Redoxverhältnisse in Böden und Wasser	
	3.4.1 Grundbegriffe	
	3.4.2 Redoxpotentiale in Böden und Abwasser	
	3.4.3 Einflussfaktoren auf das Redoxpotential	
	3.5 Zusammenfassung des Kenntnisstandes und Wissensdefizite	
4	Material und Methoden der Laborversuche	
•	4.1 Untersuchungsprogramm	
	4.2 Beschreibung des Versuchsstandes	
	4.3 Beschreibung der Substrate	
	4.4 Belastungs- und Betriebsbedingungen	
	4.5 Erfassung von Messdaten	
	4.5.1 Hydraulisches Verhalten	
	4.5.2 Stofftransport in der gelösten Phase	
	4.5.3 Stoffrückhalt	
	4.5.4 Online-Messdaten – Erfassung und Wartung der Messgeräte	
	4.6 Bodenuntersuchungen	

	4.6.1 Bestimmung der Biomasse	66
	4.6.2 Weitere Parameter	67
	4.7 Datenbilanzierung	68
5	Ergebnisse und Diskussion	70
	5.1 Bodenphysikalische Eigenschaften und hydraulisches Verhalten	73
	5.1.1 Porosität und Sättigungsgrad	73
	5.1.2 Hydraulisches Verhalten	74
	5.1.3 Tracerversuch	76
	5.1.4 Zusammenfassung der bodenmechanischen und hydraulischen Eigensch	aften 78
	5.2 Reinigungsleistung bezüglich CSB und Ammonium	79
	5.2.1 Einfahrphase	79
	5.2.2 Variation des Beschickungsvolumen und der Zulauffracht	82
	5.2.3 Variation der Drosselabflussspende	93
	5.2.4 Zusammenfassung wesentlicher Erkenntnisse	102
	5.3 Milieubedingungen	104
	5.3.1 Milieubedingungen im Standardbetrieb (Rheinsand)	104
	5.3.2 Extreme Ereignisse	108
	5.3.3 Einfluss der Drosselabflussspenden auf den Sauerstoffverbrauch	113
	5.3.4 Zusammenfassung wesentlicher Ergebnisse	119
	5.4 Gesamtbetrachtung der Beschickung	121
	5.4.1 Vergleich der Substrate	121
	5.4.2 Nitratbetrachtung	127
	5.4.3 Zusammenfassung wesentlicher Erkenntnisse	132
	5.5 Verteilung der Biomasse	133
6	Zusammenfassende Disskussion und Ausblick	137
	6.1 Luft- und Wassertransport	137
	6.2 Prozessbeschreibung	138
	6.2.1 Rückhalt organischer Verbindungen	139
	6.2.2 Ammoniumrückhalt und Nitrifikation	139
	6.2.3 Denitrifikation	140
	6.3 Einfluss der Substrateigenschaften und der Drosselabflussspende auf die	
	Bemessung der Retentionsbodenfilter	
	6.4 Steuerung des Filterbetriebes	
	6.5 Forschungsbedarf	
7	Literatur	144