METHODS IN ENZYMEOLOGY
Laboratory Methods in Enzymology: Protein Part A

Edited by

JON LORSCH
Johns Hopkins University School of Medicine
Baltimore, MD, USA
CONTENTS

Contributors xi
Preface xv

Section I
Protein Protocols

1. Practical Steady-State Enzyme Kinetics 3
 Jon R. Lorsch
 1. Theory 4
 2. Equipment 6
 3. Materials 6
 4. Protocol 6
 5. Step 1 Measure Initial Rates of the Enzyme-Catalyzed Reaction as a Function of Substrate Concentration 7
 6. Step 2 Determine the Kinetic Parameters (V_{max}, k_{cat}, K_m) 10
 7. Step 3 Analyze the Mode of Action of an Inhibitor 13
 References 15

2. Quantification of Protein Concentration Using UV Absorbance and Coomassie Dyes 17
 James E. Noble
 1. Theory 18
 2. Equipment 19
 3. Materials 19
 4. Protocol 1 20
 5. Step 1 Quantification of Protein Using UV Absorbance 21
 6. Protocol 2 23
 7. Step 1 Quantification of Protein Using the Coomassie (Bradford) Assay 24
 References 26

3. Preparation of Protein Samples for Mass Spectrometry and N-Terminal Sequencing 27
 Gary Glenn
 1. Theory 28
 2. Equipment 30
 3. Materials 30
4. Method A Preparation of Protein Samples for Mass Spectrometry 33
5. Step A1 Purify the Mitochondria by Metrizamide Gradient Centrifugation and Solubilize them 34
6. Step A2 Fractionate the Solubilized Mitochondria by Sucrose Density Gradient Sedimentation 35
7. Step A3 Separate the Proteins by SDS-PAGE 37
8. Method B Preparation of Protein Samples for N-Terminal Sequencing 38
9. Step B1 Prepare Whole Cell Lysates of the Cells 39
10. Step B2 Affinity Purify the Protein of Interest 40
11. Step B3 Separate Proteins by SDS-PAGE and Transfer to PVDF Membrane 42
12. Step B4 Stain the PVDF Membrane and Take it to Your Protein Sequencing Facility 42
References 44

Section II
Protein Protocols/Cell Lysis

4. Lysis of Mammalian and Sf9 Cells 47
 Jennifer M. Kavran and Daniel J. Leahy
 1. Theory 48
 2. Equipment 48
 3. Materials 48
 4. Protocol 49
 5. Step 1 Resuspend Cells in Lysis Buffer 49
 6. Step 2 Lyse Cells Using a French Press 51
 7. Step 3 Clarify the Cell Lysate 51
 References 52

Section III
Protein Protocols/Measurement of Protein Synthesis and Decay Rates

5. In Vivo [35 S]-Methionine Incorporation 55
 Anthony M. Esposito and Terri Goss Kinzy
 1. Theory 56
 2. Equipment 56
 3. Materials 57
 4. Protocol 59
 5. Step 1 Preparation of Culture 60
 6. Step 2 Lyse Cells and TCA Precipitate Proteins 61
13. Recombinant Protein Expression in Baculovirus-Infected Insect Cells

Donald L. Jarvis

1. Theory 150
2. Equipment 150
3. Materials 151
4. Protocol 153
5. Step 1 Perform a Viable Cell Count 154
6. Step 2 Plaque Purify the Recombinant Baculovirus 154
7. Step 3 Prepare and Titer a Working Stock of the Recombinant Baculovirus 158
8. Step 4 Infect Insect Cells with the Recombinant Baculovirus and Produce the Protein of Interest 159

References 163

Patti A. Longo, Jennifer M. Kavran, Min-Sung Kim, and Daniel J. Leahy

1. Theory 165
2. Equipment 166
3. Materials 166
4. Protocol 167
5. Step 1 Serial Dilution of Cells 168
6. Step 2 Grow Single Cells and Analyze Protein Expression 171

References 172

Author Index 173
Subject Index 177