Introduction to Bioorganic Chemistry and Chemical Biology

David Van Vranken and Gregory Weiss

:

Detailed Contents

Chapter 1

The Fundamentals of Chemical Biology	1
Why organize a book on chemical biology around biooligomers?	1
1.1 THE CENTRAL DOGMA OF MOLECULAR BIOLOGY The central dogma of molecular biology is an	2
organizing principle for chemical biology	2
1.2 GENES A gene is made up of a promoter and a transcribed sequence	3 3
1.3 GENOMES	5
We have sequenced the human genome and many others. Now what?	5
We are far from understanding cells that we understand the best— <i>Escherichia coli</i>	5 '
We are even farther from understanding human cells	6
You cannot judge a cell by its genome The observable phenotype belies the hidden genotype	8 9
1.4 SOURCES OF DIVERSITY BEYOND GENOMES The transcriptome is the collection of all of the RNA	9
transcripts in a cell	9
RNA splicing amplifies the diversity of the transcriptome Post-translational modification of proteins amplifies	10
the diversity of the proteome	10
Beyond template-directed synthesis of biooligomers	11
1.5 COMBINATORIAL ASSEMBLY GENERATES DIVERSITY	12
Combinatorial assembly of linear biooligomers can generate massive diversity	12
Combinatorial synthesis can be used to synthesize DNA libraries	13
Modular architecture lends itself to the synthesis of non-natural chemical libraries	13
The human immune system uses combinatorial biosynthesis	14

1.6 SOME COMMON TOOLS OF CHEMICAL BIOLOGY Chromophores reveal invisible molecules	15 15
Assays connect molecular entities to readily visible	10
phenomena Deventional interactional interaction	16
Powerful microbiological screens reveal interesting chemical phenomena	17
•	
Viruses deliver genes efficiently	18
Vast libraries of proteins can be screened <i>in vitro</i>	10
using bacteriophages	19
In vitro screens of DNA and RNA push the limits	10
of library diversity	19
Small molecules take control	19
Short RNA molecules silence gene expression	21
Monoclonal antibodies bind specifically	21
Immortal cancer cell lines serve as mimics of human	
organs	21
Human stem cells are highly valuable tools for	~~
research and medicine	22
Model organisms teach us about humans	22
1.7 SUMMARY	24
PROBLEMS	25
Chapter 2	
The Chemical Origins of Biology	27
2.1 MECHANISTIC ARROW-PUSHING IS AN	
EXPRESSION OF MOLECULAR ORBITAL THEORY	27
Three properties control chemical reactivity	27
Perturbational molecular orbital theory connects	
arrow-pushing with quantum mechanics	28
Six canonical frontier orbitals can be used to predict	
reactivity	29
Electronegativity affects both frontier orbitals and	
Coulombic interactions	31
Curved mechanistic arrows depict the interaction	
of filled orbitals with unfilled orbitals	32
There are three basic rules for mechanistic arrow-	

32

pushing

DETAILED CONTENTS xi

2.2 HYDROGEN BONDS AND PROTON TRANSFERS	33
Hydrogen bonds involve three atoms Proton transfers to and from heteroatoms are usually	33
very fast	34
Linear geometries are preferred for proton transfers	35
2.3 PREBIOTIC CHEMISTRY HCN and CH_2O are key ingredients in the primordial	36
soup	36
Solutions of HCN contain both nucleophile and electrophile at pH 9.2	3 ⁷
HCN forms purines and pyrimidines under prebiotic conditions	38
Aldol reactions with formaldehyde generate carbohydrates	40
Cyanide catalyzes the benzoin reaction	40
Did we arise from a primordial RNA world? Amino acids arise spontaneously under prebiotic	41
conditions	41
2.4 NONBONDING INTERACTIONS Essentially everything taking place in the cell involves	42
nonbonding interactions The weak energies of nonbonding interactions are	42
not easily calculated using perturbational molecular	
orbital theory	43
For nonbonding interactions, the energies can be fitted to a simplified equation	43
van der Waals interactions can be described by the Lennard-Jones potential	44
It is helpful to distinguish reversible from irreversible interactions	45
Entropy makes it difficult to identify favorable states among seemingly endless possibilities	47
The hydrophobic effect results from a balance	47
between attractive forces and entropy	47
2.5 THE POWER OF MODULAR DESIGN Modular design underlies the five basic types of	48
biooligomers Lability correlates inversely with information longevity	48 .49
Why are esters more reactive than amides?	50
Why are phosphate esters less reactive than carboxylic esters?	51
2.6 SUMMARY	53
PROBLEMS	54
Chapter 3	
DNA	57
3.1 FORMS OF DNA	57
The canonical double helix is one of several forms of DNA	57
The organization of genomic DNA molecules	<i></i>
depends on the type of organism	58

	3.2 THE RIBONUCLEOTIDE SUBUNITS OF DNA	59
	Nucleotides are phosphate esters	59
	DNA and RNA are polymers of nucleotides	60
	Are the heterocyclic DNA bases aromatic? Nucleic acids are not acidic, and DNA bases are not	60
	basic	62
	The missing 2'-hydroxyl group of DNA confers	02
	stability to phosphodiester hydrolysis	62
	Modifications to DNA bases are as important as the	
	nucleotide DNA sequence	63
	3.3 ELEMENTARY FORCES IN DNA	64
	Base pairing knits together the two strands of DNA	64
	Some non-natural, isomeric bases form effective	01
	base pairs	66
	Hydrogen bonds are not absolutely essential for	
	complementary base pairing	67
	Hoogsteen base pairing is present in triplex DNA	68
	Aromatic π stacking stabilizes the DNA double helix	68
	Intercalation between DNA base pairs involves π	
	stacking	69
	Double-stranded DNA undergoes reversible unfolding and refolding	69
	Complementarity drives self-assembly of DNA	71
	Short stretches of DNA can fold into hairpins	72
	3.4 DNA SUPERSTRUCTURE	73
	Double-stranded DNA forms supercoils	73
	Topoisomerases resolve topological problems with DNA	73
	Bacterial plasmids are rings of DNA	74
	Plasmids contain genes that confer advantageous	/ 1
	traits	75
	Eukaryotic DNA is coiled around histone proteins	76
	3.5 THE BIOLOGICAL SYNTHESIS OF DNA BY	
	POLYMERASE ENZYMES	78
	DNA polymerases lengthen existing strands	78
	DNA polymerases copy with high fidelity	79
	Reverse transcriptase lengthens existing DNA strands	
	on an RNA template	79
	DNA polymerase incorporates modified thymidylate	
	residues	80
	The polymerase chain reaction amplifies DNA	01
	through iterative doubling	81
	3.6 THE CHEMICAL SYNTHESIS OF DNA	82
	The race to crack the genetic code drove the	
	development of DNA synthesis	82
	The Khorana method of DNA synthesis relies on	83
,	phosphate coupling chemistry Letsinger recognized the speed and efficiency of	00
,	phosphite couplings	83
	Caruthers synthesized DNA by using phosphoramidites	
,	on solid phase	84
	Automated oligonucleotide synthesis is performed	
	on glass particles	85

Modern automated DNA synthesis involves repetitive	
four-step cycles	86
The 4,4'-dimethoxytrityl group is deprotected through an S_N 1 reaction	86
Tetrazole serves as an acid catalyst in phosphoramidite	00
couplings	87
Capping unreacted 5'-hydroxyl groups prevents the propagation of mistakes	87
Oxidation of unstable phosphites generates stable	0.
phosphates	88
Aqueous ammonium hydroxide cleaves and	
deprotects synthetic DNA Microarrays of DNA facilitate screening	89 89
Why are DNA and RNA made up of five-membered	09
ring sugars?	90
3.7 SEPARATION OF DNA MOLECULES BY	
ELECTROPHORESIS	91
Scientists use different criteria for the purity of	
biological macromolecules versus small, organic	•••
molecules Agarose gel is used for electrophoresis of long DNA	91
molecules	92
Capillary electrophoresis is used for analytical	72
separation of short DNA molecules	94
DNA dideoxy sequencing capitalizes on the	
tolerance of DNA polymerase	95
Large-scale sequencing methods avoid the need for electrophoresis	96
•	
3.8 RECOMBINANT DNA TECHNOLOGY Molecular biology connects DNA molecules to	97
biological phenotypes	97
Restriction endonucleases cut DNA at specific sites	
and facilitate re-ligation	98
Mutations in DNA can lead to changes in expressed	101
proteins Site-directed mutagenesis involves labile plasmid	101
templates	102
3.9 NUCLEIC ACID PHOTOCHEMISTRY	102
Ultraviolet radiation promotes [2+2] photodimerization	
of thymine and uracil bases	102
Thymine dimers in DNA can be repaired	103
Psoralens intercalate between DNA base pairs and	104
photocrosslink opposing strands	104
3.10 DNA AS A TARGET FOR CYTOTOXIC DRUGS Cell division is highly controlled in normal human	105
cells	105
Dividing human cells must pass through checkpoints,	
or die Traditional chamatharany targets DNA in ranidh	105
Traditional chemotherapy targets DNA in rapidly dividing cells, cancerous or not	106
Inhibition of thymine biosynthesis triggers apoptosis	
during the S phase of the cell cycle	107
Adding the methyl group to thymine is essential	
for DNA synthesis	108

DNA is a nucleophile Simple alkylating agents are highly mutagenic Bifunctional alkylating agents that crosslink DNA are	110 110
highly cytotoxic Strained rings can bring highly reactive functional	111
groups to DNA Epoxide alkylators of DNA are highly mutagenic	112 113
Aziridinium rings are relatively selective alkylators	
of DNA Cyclopropane rings can serve as spring-loaded	114
electrophiles Free radicals and oxygen conspire to cleave DNA	115
sugars Enediyne antitumor antibiotics cleave both strands	117
of DNA via para-benzyne diradicals	118
Some highly reactive enediyne natural products are protected by protein delivery vehicles	122
Bleomycin catalyzes the formation of reactive oxygen species	123
3.11 SUMMARY	124
PROBLEMS	125
Chapter 4	171
	131
4.1 RNA STRUCTURE The nucleotide subunits of RNA are subtly different	132
from those of DNA	132
The 2'-OH of RNA confers high chemical reactivity	132
Ubiquitous ribonucleases rapidly degrade RNA	133
The 5-methyl group of thymine is a form of chemical	134
RNA adopts globular shapes because it is single-	
stranded	135
4.2 RNA SYNTHESIS	139
RNA polymerases create new strands of RNA	139
DNA primase is just another RNA polymerase	140
4.3 TRANSCRIPTIONAL CONTROL	141
DNA sequences determine start sites and stop sites for RNA polymerase	141
Transcription factors bind to DNA with exquisite	141
sequence specificity	142
Transcription can be controlled by small molecules Transcription of mRNA in human cells involves many	143
proteins and many regions of DNA	145
The yeast two-hybrid system provides a transcription-	140
based tool to identify protein-protein interactions	146
4.4 mRNA PROCESSING IN EUKARYOTES	148
After synthesis, eukaryotic organisms modify their mRNA extensively	148
The ends of the mRNA are capped and polyadenylated	149
Most eukaryotic genes require mRNA splicing	150
Some RNA introns undergo self-splicing without a spliceosome	151
apriceusurie	1.71

١

4.5 CONTROLLED DEGRADATION OF RNA	152
Ribonuclease H degrades RNA•DNA duplexes RNA-induced silencing complexes target specific	152
mRNA sequences	153
RNA interference is a useful laboratory tool	155
4.6 RIBOSOMAL TRANSLATION OF mRNA	
INTO PROTEIN	156
The ribosome catalyzes oligomerization of α-amino esters	156
The ribosome is a massive molecular machine, half	
protein and half RNA	157
tRNA molecules are heavily processed and adopt fixed	
shapes	159
The genetic code allows one to translate from mRNA sequence into protein sequence	161
tRNA synthetases recognize amino acids and	101
nucleotides	162
What controls the beginning and end of translation?	163
Translational initiation is a focal point for control of	
protein synthesis	165
A protein escorts each aminoacyl-tRNA to the	
ribosome for fidelity testing	166
The genetic code can be expanded beyond 20 amino	167
acids Ligand-dependent riboswitches control protein	167
expression	169
Many antibiotics target bacterial protein synthesis	170
4.7 FROM OLIGONUCLEOTIDE LIBRARIES TO	
PROTEIN LIBRARIES	171
Automated oligonucleotide synthesis facilitates	
generation of both DNA and RNA oligonucleotide	,
libraries	171
RNA libraries can be screened for ribozymes	173
mRNA libraries can be expressed as protein libraries	174
4.8 SUMMARY	175
PROBLEMS	176
Chapter 5	
Peptide and Protein Structure	179
5.1 AMINO ACIDS AND PEPTIDES	180
The standard ribosomal amino acids include a broad	
range of functionalities	180
Amino acids are polymerized into peptides and proteins	181

Amino acid side chains have predictable protonation

Excess reagents and optimized chemistry allow high-

Amino acid side chains mediate protein-protein

5.2 SOLID-PHASE PEPTIDE SYNTHESIS

Peptides can be used as pharmaceuticals

throughput peptide synthesis

183

184

185

185

187

states

interactions

Chemical peptide synthesis involves repeated	
additions of activated carboxylates to the N terminus	188
The need to remove excess reagents and chemical	
by-products drove the development of solid-phase	
peptide synthesis	188
	100
Either acid- or base-labile carbamates are used for	
the temporary protection of the N_{α} group	189
Carbodiimides drive condensation to form peptide	
bonds	190
Side reactions can compete with peptide coupling	
reactions	190
HOBt minimizes side reactions in carbodiimide	120
	101
couplings	191
Uronium coupling agents provide even faster	
amide bond formation	192
Resins for solid-phase peptide synthesis are made	
of plastic	193
Cleavable linkers between the synthesized peptide	
and solid support provide stable, yet reversible,	
attachments	193
	195
Side-chain protecting groups come off under	
acidic conditions	195
Peptide nucleic acids lack phosphate esters and	
ribofuranose rings	196
Native chemical ligation generates cysteinyl amides	
through aminolysis of thiol esters	197
5.3 FUNDAMENTAL FORCES THAT CONTROL	
PROTEIN SECONDARY STRUCTURE	199
Secondary structure involves different patterns of	
hydrogen bonding between backbone amides	199
α Helices allow effective hydrogen bonding between	
	200
neighboring amide $N-H$ and $C=O$	200
β Sheets satisfy hydrogen bonding by backbone	
amides with linkages between different strands	201
Turn structures have minimal hydrogen bonding	
between backbone amides	202
Rotation about substituted ethanes, butanes, and	
pentanes reveals the fundamental forces dictating	
protein folding	203
Stereoelectronic effects distinguish amides and	205
5	204
esters from substituted ethenes	204
Interactions between allylic substituents and alkene	
substituents limit the conformation of substituted	
propenes	205
Allylic strain explains the dominance of two types	
of secondary structures	206
•	
5.4 THE CHEMISTRY OF DISULFIDE CROSSLINKS	207
Cystine disulfides form readily under oxidative	
conditions	207
Glutathione is an intracellular thiol buffer	207
Cystine disulfides in proteins are in equilibrium	
,	208
with glutathione disulfides	208
with glutathione disulfides Combinatorial crosslinking and protein misfolding	208
with glutathione disulfides	208 209

`

Concentrations of glutathione depend on location	210
5.5 PROTEIN DOMAINS HAVE STRUCTURAL AND FUNCTIONAL ROLES	210
Biological protein assemblies exhibit hierarchical structures	210
The tertiary and quaternary structures of proteins access a wide range of different archetypal protein folds	211
Zinc-finger domains recognize DNA sequences A number of common domains are based on	212
β -sandwich architectures Calcium promotes interactions between cadherin	213
domains WD domains fit together like triangular slices of a cake	215 216
Collagen is formed from a three-stranded helix Protein kinase domains and seven-transmembrane	216
domains have key roles in signal transduction The RNA recognition motif domain binds to single-	217
stranded RNA Peptide-binding domains can confer modular functions to proteins	218 218
5.6 HIGHER LEVELS OF PROTEIN STRUCTURE	210
The tertiary structure consists of one or more domains Quaternary structure consists of highly integrated	219
assemblies of independent, folded proteins	220
5.7 SUMMARY	221
PROBLEMS	
FNUDLEWIS	223
Chapter 6	223
	223 229
Chapter 6 Protein Function 6.1 RECEPTOR-LIGAND INTERACTIONS	
 Chapter 6 Protein Function 6.1 RECEPTOR-LIGAND INTERACTIONS The thermodynamics and kinetics of receptor-ligand interactions govern all processes in biology 	229
Chapter 6 Protein Function 6.1 RECEPTOR-LIGAND INTERACTIONS The thermodynamics and kinetics of receptor-ligand interactions govern all processes in biology Dose-response curves measure protein function, and correlate with affinity	229 229
 Chapter 6 Protein Function 6.1 RECEPTOR-LIGAND INTERACTIONS The thermodynamics and kinetics of receptor-ligand interactions govern all processes in biology Dose-response curves measure protein function, and 	229 229 229
 Chapter 6 Protein Function 6.1 RECEPTOR-LIGAND INTERACTIONS The thermodynamics and kinetics of receptor-ligand interactions govern all processes in biology Dose-response curves measure protein function, and correlate with affinity Highly specific protein-small-molecule interactions are useful 6.2 A QUANTITATIVE VIEW OF ENZYME FUNCTION Enzymes are catalytic receptors 	229 229 229 232
 Chapter 6 Protein Function 6.1 RECEPTOR-LIGAND INTERACTIONS The thermodynamics and kinetics of receptor-ligand interactions govern all processes in biology Dose-response curves measure protein function, and correlate with affinity Highly specific protein-small-molecule interactions are useful 6.2 A QUANTITATIVE VIEW OF ENZYME FUNCTION 	229 229 232 232 234 236
 Chapter 6 Protein Function 6.1 RECEPTOR-LIGAND INTERACTIONS The thermodynamics and kinetics of receptor-ligand interactions govern all processes in biology Dose-response curves measure protein function, and correlate with affinity Highly specific protein-small-molecule interactions are useful 6.2 A QUANTITATIVE VIEW OF ENZYME FUNCTION Enzymes are catalytic receptors Measurements of enzyme efficiency must account for substrate binding and catalysis 6.3 A MECHANISTIC VIEW OF ENZYMES THAT CATALYZE MULTISTEP REACTIONS 	229 229 232 234 236 236
 Chapter 6 Protein Function 6.1 RECEPTOR-LIGAND INTERACTIONS The thermodynamics and kinetics of receptor-ligand interactions govern all processes in biology Dose-response curves measure protein function, and correlate with affinity Highly specific protein-small-molecule interactions are useful 6.2 A QUANTITATIVE VIEW OF ENZYME FUNCTION Enzymes are catalytic receptors Measurements of enzyme efficiency must account for substrate binding and catalysis 6.3 A MECHANISTIC VIEW OF ENZYMES THAT CATALYZE MULTISTEP REACTIONS Protein kinases and proteases catalyze reactions 	229 229 232 234 236 236 238
 Chapter 6 Protein Function 6.1 RECEPTOR-LIGAND INTERACTIONS The thermodynamics and kinetics of receptor-ligand interactions govern all processes in biology Dose-response curves measure protein function, and correlate with affinity Highly specific protein-small-molecule interactions are useful 6.2 A QUANTITATIVE VIEW OF ENZYME FUNCTION Enzymes are catalytic receptors Measurements of enzyme efficiency must account for substrate binding and catalysis 6.3 A MECHANISTIC VIEW OF ENZYMES THAT CATALYZE MULTISTEP REACTIONS Protein Kinases and proteases catalyze reactions through multistep mechanisms Protein kinases share a common motif 	229 229 232 234 236 236 236 238 240
 Chapter 6 Protein Function 6.1 RECEPTOR-LIGAND INTERACTIONS The thermodynamics and kinetics of receptor-ligand interactions govern all processes in biology Dose-response curves measure protein function, and correlate with affinity Highly specific protein-small-molecule interactions are useful 6.2 A QUANTITATIVE VIEW OF ENZYME FUNCTION Enzymes are catalytic receptors Measurements of enzyme efficiency must account for substrate binding and catalysis 6.3 A MECHANISTIC VIEW OF ENZYMES THAT CATALYZE MULTISTEP REACTIONS Protein kinases and proteases catalyze reactions through multistep mechanisms Protein kinases share a common motif Regulation of protein kinase activity requires allosteric binding 	229 229 232 234 236 236 236 238 240 240 241 244
 Chapter 6 Protein Function 6.1 RECEPTOR-LIGAND INTERACTIONS The thermodynamics and kinetics of receptor-ligand interactions govern all processes in biology Dose-response curves measure protein function, and correlate with affinity Highly specific protein-small-molecule interactions are useful 6.2 A QUANTITATIVE VIEW OF ENZYME FUNCTION Enzymes are catalytic receptors Measurements of enzyme efficiency must account for substrate binding and catalysis 6.3 A MECHANISTIC VIEW OF ENZYMES THAT CATALYZE MULTISTEP REACTIONS Protein kinases and proteases catalyze reactions through multistep mechanisms Protein kinases share a common motif Regulation of protein kinase activity requires allosteric binding Phosphorylation can also activate kinases 	229 229 232 234 236 236 238 240 240 240 241
 Chapter 6 Protein Function 6.1 RECEPTOR-LIGAND INTERACTIONS The thermodynamics and kinetics of receptor-ligand interactions govern all processes in biology Dose-response curves measure protein function, and correlate with affinity Highly specific protein-small-molecule interactions are useful 6.2 A QUANTITATIVE VIEW OF ENZYME FUNCTION Enzymes are catalytic receptors Measurements of enzyme efficiency must account for substrate binding and catalysis 6.3 A MECHANISTIC VIEW OF ENZYMES THAT CATALYZE MULTISTEP REACTIONS Protein kinases and proteases catalyze reactions through multistep mechanisms Protein kinases share a common motif Regulation of protein kinase activity requires allosteric binding 	229 229 232 234 236 236 236 238 240 240 241 244

Enzymes proceed via mechanisms with the minir	num
number of different types of transition states	251
Serine proteases cleave amides by using an alko	
nucleophile	252
Metalloproteases use Zn ²⁺ ions to activate the	
nucleophilic water and stabilize the tetrahedra	
intermediate	253 254
Activation can control protease activity Reversible enzyme inhibitors include transition-s	
analogs with very high affinity	255
Mechanism-based enzyme inhibitors react with	255
residues at the active site	258
Cooperative binding requires careful placement	of
functional groups	260
Triosephosphate isomerase is nearly a perfect	
enzyme	262
6.4 ENZYMES THAT USE ORGANIC COFACTOR	5 263
Enzyme cofactors extend the capabilities of enzy	rmes 263
Thiamine pyrophosphate provides a stabilized yl	ide 264
The dihydropyridine group of niacin (vitamin B ₃)	
provides a reactive hydride	265
The pyridoxal cofactor serves as an electron sink	266
6.5 ENGINEERING IMPROVED PROTEIN FUNCT	ION 269
Protein engineering provides power tools for the	!
dissection of protein function and the develop	
hyperfunctional molecules	269
Alanine scanning assigns function to side chains	
and motifs	269
Alanine scanning allows reverse engineering of	270
protein function Protein engineering enables improvement of	270
· protein function	272
Protein engineering enables a change of protein	272
function	273
Most random mutations debilitate rather than	
enhance protein function	274
Recombination generates new combinations of	
existing mutations	274
Screens work well for modest numbers of protein	
variants, but exceptionally diverse libraries req selections	
	275
6.6 SUMMARY	275
PROBLEMS	277
Chapter 7	
Glycobiology	281
7.1 STRUCTURE	281
There are 10 common monosaccharide building	101
blocks for human glycans Glycobiology uses a compact form of nomenclat	281 ure 283
Polar effects and stereoelectronic effects determ	
the relative stability of α and β anomers	284
• •	
7.2 THE CHEMISTRY AND ENZYMOLOGY OF TI GLYCOSIDIC BOND	HE 286
	200

DETAILED CONTENTS xv

Monosaccharide carbonyl groups form hemiacetals Six- and five-membered ring hemiacetals are	286
common Chemical hydrolysis of glycosidic bonds involves	286
S _N 1 reactions Enzymatic hydrolysis of glycosidic bonds involves	289
S _N 1-like S _N 2 reactions Members of all classes of glycosylhydrolases have	290
two carboxylic acids in the active site Substrate distortion is important in glycosylhydrolase	290
enzymes	291
Inhibiting glycosylhydrolase enzymes from viruses can treat influenza	293
Glycosyltransferases transfer monosaccharides from glycosyl phosphate donors	294
Glycosyltransferases transfer glycosyl groups from phosphates	294
7.3 POLYSACCHARIDES Diastereomers of glucose polymers have very	296
different properties Chitin is a resilient polymer in insect cuticles	296 297
Some tissues are cushioned by the polysaccharide hyaluronan	298
Meningococci are coated with polysialic acids like those found on neurons	298
7.4 GLYCOPROTEINS Glycosylation of human proteins occurs in the	299
vesicles of the secretory pathway Synthesis of O-linked glycoproteins begins with the	299
addition of xylose or N-acetylgalactose	300
O-linked proteoglycans are polyanions The carbohydrate moiety of N-linked glycoproteins	301
is initially added as an oligosaccharide An Asn-Xxx-Ser motif adopts a reactive conformation	303
in the N-glycosylation of proteins The processing of glycans occurs during vesicular	304
trafficking A few human proteins are C-mannosylated on	305
tryptophan residues Glycosylation of proteins sometimes, but not always,	308
affects the intrinsic function of the protein Most extracellular signaling proteins are glycosylated	308
with oligosaccharides Many protein pharmaceuticals are glycosylated	310 310
Cell-cell recognition is often mediated by	
glycoproteins Introduction of N-glycosylation sites can improve	311
protein pharmaceuticals	312
Modified sugars can carry reactive groups through the glycoprotein biosynthesis pathway	312
7.5 GLYCOLIPIDS	314
Glycosphingolipids are lipid-like glycoconjugates Glycosylphosphatidylinositols from pathogens are	314
potential vaccines	315

36 96	 7.6 GLYCOSYLATION IN THE CYTOSOL O-glycosylation of proteins in the cytosol with β-GlcNAc is analogous to phosphorylation 	316 316
86	Drugs are targeted for export by glucuronidation	318
39	7.7 CHEMICAL SYNTHESIS OF OLIGOSACCHARIDES Anomeric stereochemistry is controlled by the	318
90	anomeric leaving group and the 2 substituent Modern oligosaccharide synthesis takes advantage	318
90 91	of activatable leaving groups Synthesis of oligosaccharides still requires a skilled	320
93	synthetic organic chemist 7.8 PROTEINS THAT BIND TO CARBOHYDRATE	321
	LIGANDS	322
94	Glycans differentiate the surfaces of human cells Most carbohydrate-binding proteins are multivalent Human lectins mediate selective adhesion of	322 322
94	leukocytes	326
96	Human blood group antigens are found on	
96	glycolipids and glycoproteins Some toxins enter cells through multivalent	326
97	carbohydrate recognition Microarray technology facilitates the analysis of protein–glycan interactions	327 328
98		
98	7.9 GLUCOSE HOMEOSTASIS AND DIABETES Human metabolism and paper-burning are	330
99	related transformations Glucose reacts with proteins over time	330 331
99	Glucose-derived protein crosslinks are not necessarily permanent	332
)0)1	There is a big market for artificial ligands for human taste receptors	333
I	7.10 SUMMARY	335
)3	PROBLEMS	337
)4	Chapter 8	
)5	Polyketides and Terpenes	339
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8.1 THE CLAISEN REACTION IN POLYKETIDE	
)8	BIOSYNTHESIS The diverse structures of polyketide natural products	340
)8	belie their iterative construction Polyketides are derived from two-carbon and	340
10 10	three-carbon building blocks	340
	8.2 THE BIOSYNTHESIS OF FATTY ACIDS IS A PARADIGM FOR POLYKETIDE BIOSYNTHESIS	242
1	Fatty acids have varying levels of unsaturation	342 342
2	Fatty acid/polyketide synthases are categorized on the basis of their supramolecular structure	343
12	The acyl carrier protein shuttles the growing poly- ketide chain from one catalytic domain to another	344
4	A transacylase loads monomeric subunits onto	
4	the carrier protein Ketosynthases catalyze a decarboxylative Claisen	344
5	condensation	345

Ketoreductases catalyze hydride transfer from NADPH	345
	346
Dehydratases catalyze β -elimination	
Enoyl reductases catalyze a conjugate reduction A thioesterase uses a catalytic triad to cleave the	346
acyl group from the acyl carrier protein	347
	547
Enzymes associated with the endoplasmic reticulum	240
put the finishing touches on fatty acids	348
8.3 THE BIOLOGICAL ROLE OF HUMAN	
POLYKETIDES	348
Eight categories of lipids are found in biology	348
Lipid membranes are composed of lipids with a	÷.•
polar head group and a nonpolar tail	348
The lipid bilayer entropically favors interactions betwee	
embedded molecules	350
Phospholipases generate distinct chemical signals	550
by hydrolyzing various bonds of phospholipids	350
Phospholipase C β generates two signaling molecules	351
Arachidonic acids are converted into diverse signaling	221
molecules during inflammation	352
	332
Sphingosine derivatives are important in intracellular	255
signaling	355
Metal-catalyzed hydrogenation of unsaturated fats	257
changed the human diet	357
Some lipids from lower organisms contain	
cyclopropane rings	358
Acylation of human proteins induces membrane	
localization	359
Chemical transformation of fats generates useful	
compounds	361
8.4 NONHUMAN POLYKETIDE NATURAL	
8.4 NONHUMAN POLYKETIDE NATURAL PRODUCTS	362
PRODUCTS	362
PRODUCTS Several tricks amplify the potential diversity of	
PRODUCTS Several tricks amplify the potential diversity of polyketide natural products	362
PRODUCTS Several tricks amplify the potential diversity of polyketide natural products <i>Streptomyces</i> has mastered polyketide biosynthesis	
PRODUCTS Several tricks amplify the potential diversity of polyketide natural products <i>Streptomyces</i> has mastered polyketide biosynthesis The modular genetic organization of type I	362
PRODUCTS Several tricks amplify the potential diversity of polyketide natural products <i>Streptomyces</i> has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic	362 364
PRODUCTS Several tricks amplify the potential diversity of polyketide natural products Streptomyces has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic reprogramming	362
PRODUCTS Several tricks amplify the potential diversity of polyketide natural products Streptomyces has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic reprogramming Sometimes additional methyl groups are added to	362 364 366
PRODUCTS Several tricks amplify the potential diversity of polyketide natural products Streptomyces has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic reprogramming	362 364
PRODUCTS Several tricks amplify the potential diversity of polyketide natural products Streptomyces has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic reprogramming Sometimes additional methyl groups are added to the polyketide backbone	362 364 366 369
 PRODUCTS Several tricks amplify the potential diversity of polyketide natural products Streptomyces has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic reprogramming Sometimes additional methyl groups are added to the polyketide backbone 8.5 NONRIBOSOMAL PEPTIDE SYNTHASES 	362 364 366
 PRODUCTS Several tricks amplify the potential diversity of polyketide natural products Streptomyces has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic reprogramming Sometimes additional methyl groups are added to the polyketide backbone 8.5 NONRIBOSOMAL PEPTIDE SYNTHASES Ribosomal translation is suited to the production 	362 364 366 369 369
 PRODUCTS Several tricks amplify the potential diversity of polyketide natural products Streptomyces has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic reprogramming Sometimes additional methyl groups are added to the polyketide backbone 8.5 NONRIBOSOMAL PEPTIDE SYNTHASES Ribosomal translation is suited to the production of large proteins, not short peptides 	362 364 366 369
 PRODUCTS Several tricks amplify the potential diversity of polyketide natural products Streptomyces has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic reprogramming Sometimes additional methyl groups are added to the polyketide backbone 8.5 NONRIBOSOMAL PEPTIDE SYNTHASES Ribosomal translation is suited to the production of large proteins, not short peptides Most bioactive peptide secondary metabolites are 	362 364 366 369 369 369
 PRODUCTS Several tricks amplify the potential diversity of polyketide natural products Streptomyces has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic reprogramming Sometimes additional methyl groups are added to the polyketide backbone 8.5 NONRIBOSOMAL PEPTIDE SYNTHASES Ribosomal translation is suited to the production of large proteins, not short peptides Most bioactive peptide secondary metabolites are generated by peptide synthases, not by ribosomes 	362 364 366 369 369
 PRODUCTS Several tricks amplify the potential diversity of polyketide natural products Streptomyces has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic reprogramming Sometimes additional methyl groups are added to the polyketide backbone 8.5 NONRIBOSOMAL PEPTIDE SYNTHASES Ribosomal translation is suited to the production of large proteins, not short peptides Most bioactive peptide secondary metabolites are 	362 364 366 369 369 369
 PRODUCTS Several tricks amplify the potential diversity of polyketide natural products Streptomyces has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic reprogramming Sometimes additional methyl groups are added to the polyketide backbone 8.5 NONRIBOSOMAL PEPTIDE SYNTHASES Ribosomal translation is suited to the production of large proteins, not short peptides Most bioactive peptide secondary metabolites are generated by peptide synthases, not by ribosomes 	362 364 366 369 369 369 369 370
 PRODUCTS Several tricks amplify the potential diversity of polyketide natural products Streptomyces has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic reprogramming Sometimes additional methyl groups are added to the polyketide backbone 8.5 NONRIBOSOMAL PEPTIDE SYNTHASES Ribosomal translation is suited to the production of large proteins, not short peptides Most bioactive peptide secondary metabolites are generated by peptide synthases, not by ribosomes 8.6 HUMAN TERPENES 	362 364 366 369 369 369 369 370
 PRODUCTS Several tricks amplify the potential diversity of polyketide natural products Streptomyces has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic reprogramming Sometimes additional methyl groups are added to the polyketide backbone 8.5 NONRIBOSOMAL PEPTIDE SYNTHASES Ribosomal translation is suited to the production of large proteins, not short peptides Most bioactive peptide secondary metabolites are generated by peptide synthases, not by ribosomes 8.6 HUMAN TERPENES Early chemists recognized terpenes as oligomers of 	362 364 366 369 369 369 370 371
 PRODUCTS Several tricks amplify the potential diversity of polyketide natural products Streptomyces has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic reprogramming Sometimes additional methyl groups are added to the polyketide backbone 8.5 NONRIBOSOMAL PEPTIDE SYNTHASES Ribosomal translation is suited to the production of large proteins, not short peptides Most bioactive peptide secondary metabolites are generated by peptide synthases, not by ribosomes 8.6 HUMAN TERPENES Early chemists recognized terpenes as oligomers of isoprene Cationic additions lead to linear chains 	362 364 366 369 369 369 370 371 371
 PRODUCTS Several tricks amplify the potential diversity of polyketide natural products Streptomyces has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic reprogramming Sometimes additional methyl groups are added to the polyketide backbone 8.5 NONRIBOSOMAL PEPTIDE SYNTHASES Ribosomal translation is suited to the production of large proteins, not short peptides Most bioactive peptide secondary metabolites are generated by peptide synthases, not by ribosomes 8.6 HUMAN TERPENES Early chemists recognized terpenes as oligomers of isoprene Cationic additions lead to linear chains Prenyl subunits arise through enolate chemistry 	362 364 366 369 369 369 370 371 371 372
 PRODUCTS Several tricks amplify the potential diversity of polyketide natural products Streptomyces has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic reprogramming Sometimes additional methyl groups are added to the polyketide backbone 8.5 NONRIBOSOMAL PEPTIDE SYNTHASES Ribosomal translation is suited to the production of large proteins, not short peptides Most bioactive peptide secondary metabolites are generated by peptide synthases, not by ribosomes 8.6 HUMAN TERPENES Early chemists recognized terpenes as oligomers of isoprene Cationic additions lead to linear chains Prenyl subunits arise through enolate chemistry Inhibition of terpene biosynthesis is the number one 	362 364 366 369 369 369 370 371 371 372
 PRODUCTS Several tricks amplify the potential diversity of polyketide natural products Streptomyces has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic reprogramming Sometimes additional methyl groups are added to the polyketide backbone 8.5 NONRIBOSOMAL PEPTIDE SYNTHASES Ribosomal translation is suited to the production of large proteins, not short peptides Most bioactive peptide secondary metabolites are generated by peptide synthases, not by ribosomes 8.6 HUMAN TERPENES Early chemists recognized terpenes as oligomers of isoprene Cationic additions lead to linear chains Prenyl subunits arise through enolate chemistry Inhibition of terpene biosynthesis is the number one treatment for heart disease 	362 364 366 369 369 369 370 371 371 371 372 373
 PRODUCTS Several tricks amplify the potential diversity of polyketide natural products Streptomyces has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic reprogramming Sometimes additional methyl groups are added to the polyketide backbone 8.5 NONRIBOSOMAL PEPTIDE SYNTHASES Ribosomal translation is suited to the production of large proteins, not short peptides Most bioactive peptide secondary metabolites are generated by peptide synthases, not by ribosomes 8.6 HUMAN TERPENES Early chemists recognized terpenes as oligomers of isoprene Cationic additions lead to linear chains Prenyl subunits arise through enolate chemistry Inhibition of terpene biosynthesis is the number one treatment for heart disease Prenylated quinones serve important roles in redox 	362 364 366 369 369 369 370 371 371 371 372 373 375
 PRODUCTS Several tricks amplify the potential diversity of polyketide natural products Streptomyces has mastered polyketide biosynthesis The modular genetic organization of type I polyketide synthases facilitates genetic reprogramming Sometimes additional methyl groups are added to the polyketide backbone 8.5 NONRIBOSOMAL PEPTIDE SYNTHASES Ribosomal translation is suited to the production of large proteins, not short peptides Most bioactive peptide secondary metabolites are generated by peptide synthases, not by ribosomes 8.6 HUMAN TERPENES Early chemists recognized terpenes as oligomers of isoprene Cationic additions lead to linear chains Prenyl subunits arise through enolate chemistry Inhibition of terpene biosynthesis is the number one treatment for heart disease 	362 364 366 369 369 369 370 371 371 371 372 373

Tail-to-tail coupling of terpenyl diphosphates generates precursors of higher-order terpenes Polyene cyclizations generate many rings in a single	380
reaction	381
Humans lack genes for retinoid biosynthesis	383
8.7 NONHUMAN TERPENE NATURAL PRODUCTS Plants and microorganisms produce a much wider	385
range of terpene natural products than humans Isomerization of geranyl diphosphate to linalyl	385
diphosphate facilitates cyclization	386
The 2-norbornyl cation exhibits exceptional behavior	388
Minor products offer clues to the enzymatic mechanisms of terpene cyclases	389
· ·	390
Some terpene cyclases generate medium-sized rings The biosynthesis of some terpenes involves	290
nontraditional [1,3] hydride shifts	391
Plants can also make complex triterpenes from	721
squalene	391
Hyperthermophilic archaebacteria produce cyclic	
lipids from terpenes	392
8.8 SUMMARY	393
PROBLEMS	394

Chapter 9 Chemical Control of Signal Transduction 397

9.1 SIGNAL TRANSDUCTION	399
Chemical signaling is universal	399
The field of biology is full of cryptic acronyms and	
ambiguous symbols	399
Fast cellular responses do not involve the	
production of proteins	401
Cell contraction and vesicle fusion: fast calcium-	
dependent responses that do not involve changes	
in transcription	402
Cell signaling can involve pathways within cells	
and/or between cells	403
9.2 AN OVERVIEW OF SIGNAL TRANSDUCTION	
PATHWAYS IN HUMAN CELLS	404
There are seven major signal transduction pathways	
in humans	404
Chemical genetics involves the use of small	
molecules to understand gene function	405
Screening identifies small molecules for use in	
chemical genetics	406
9.3 NUCLEAR RECEPTORS	407
Binding of small-molecule ligands activates nuclear	107
receptor transcription factors	407
Some nuclear receptors translocate from cytoplasm	
to the nucleus, and bind DNA as homodimers	409
Some nuclear receptors are localized in the nucleus	
and bind to DNA as heterodimers	409
The mode of nuclear receptor dimerization	
determines DNA sequence selectivity	410

· · · · · · · · · · · · · · · · · · ·	
Human cells can be rewired for control by Drosophila	
nuclear receptors	411
Steroids make highly potent pharmaceuticals	412
Nonsteroidal ligands for nuclear receptors are	44.5
also widely used as drugs	413
Drugs can be designed to target specific mutations	
of nuclear receptors	414
9.4 CELL-SURFACE RECEPTORS THAT INTERACT	
DIRECTLY WITH TRANSCRIPTION FACTORS	415
Hematopoietic proliferation and differentiation are	
controlled by molecular signals	415
Human cytokines can be used as pharmaceuticals	416
The JAK–STAT pathway involves a receptor, a kinase,	
and a transcription factor	417
Small-molecule dimerizers can be used to demonstrate	
functional relationships between proteins	418
Other interferons bind to heterodimeric and higher-	
order receptor assemblies	419
Synthetic N-hydroxysuccinimidyl esters can acylate	
proteins in aqueous solution	419
Transforming growth factor- β receptors possess	
built-in serine/threonine kinase domains	421
9.5 RECEPTOR TYROSINE KINASES	421
Receptor tyrosine kinases control tissue growth	421
Growth factors have a role in proliferation of	421
urothelial cells	422
Comparing receptor tyrosine kinases and cytokine	422
receptors reveals useful commonalities	423
The ATP-binding sites of receptor tyrosine kinases are	425
sufficiently different that they can be selectively	
inhibited by small molecules	424
Transphosphorylation of tyrosine residues is	727
sequential	424
Receptor tyrosine kinases signal growth via a MAP	727
kinase cascade	425
Many signal transduction pathways involve abundant	725
small molecules and scarce proteins	426
Receptor tyrosine kinases turn on calcium signaling	720
pathways via phospholipase C	428
Receptor tyrosine kinases broadcast both proliferative	120
and anti-apoptotic signals via Akt	429
The differences between various receptor tyrosine	120
kinase pathways are less important than the	
similarities	430
Chemical methods for isolation and identification	
of kinase substrates	430
``	
9.6 G PROTEIN-COUPLED RECEPTORS	431
Seven-transmembrane domain G protein-coupled	
receptors can respond to a wide range of ligands	
with high dynamic range	431

High-affinity ligand–receptor interactions lead to slow response times and low dynamic range G proteins allow low-affinity receptors to have high	432
sensitivity Seven-transmembrane domain G protein-coupled	433
receptors can respond to a wide range of ligands with high dynamic range Heterotrimeric G proteins are designed to generate	434
divergent signals	434
Some elements of signal transduction pathways can integrate inputs	434
Contraction of endothelial smooth muscle is	436
controlled by $G\alpha_q$ Some bacterial toxins reprogram $G\alpha$ subunits, with	450
deadly results	437
Adenylyl cyclase and phospholipase Cβ are the most common mediators of 7TM GPCRs Many pharmaceuticals act on 7TM GPCRs that	438
respond to ligands derived from amino acids	438
Opioids act on 7TM GPCRs that bind to neuropeptides	440
Smell and taste involve 7TM GPCRs	441
How do you bind to a photon?	442
The decision between immortality and destiny involves the protein Wnt and the β -catenin pathway A seven-transmembrane receptor that controls development does not bind to an extracellular	443
ligand	444
9.7 ION CHANNEL RECEPTORS	445
Ion channel receptors provide an ultra-fast response	
	445
to stimuli	445 446
to stimuli A human cell is a bag of potassium in a salty ocean Voltage-gated ion channels are activated by	446
to stimuli A human cell is a bag of potassium in a salty ocean	
to stimuli A human cell is a bag of potassium in a salty ocean Voltage-gated ion channels are activated by transmembrane differences in ion concentrations Pentameric Cys-loop receptors are gated by neurotransmitters	446
to stimuli A human cell is a bag of potassium in a salty ocean Voltage-gated ion channels are activated by transmembrane differences in ion concentrations Pentameric Cys-loop receptors are gated by neurotransmitters The nicotinic acetylcholine receptor is a popular target for toxins	446 447
to stimuli A human cell is a bag of potassium in a salty ocean Voltage-gated ion channels are activated by transmembrane differences in ion concentrations Pentameric Cys-loop receptors are gated by neurotransmitters The nicotinic acetylcholine receptor is a popular	446 447 449
to stimuli A human cell is a bag of potassium in a salty ocean Voltage-gated ion channels are activated by transmembrane differences in ion concentrations Pentameric Cys-loop receptors are gated by neurotransmitters The nicotinic acetylcholine receptor is a popular target for toxins Tetrameric glutamate receptors are defined by their	446 447 449 450
to stimuli A human cell is a bag of potassium in a salty ocean Voltage-gated ion channels are activated by transmembrane differences in ion concentrations Pentameric Cys-loop receptors are gated by neurotransmitters The nicotinic acetylcholine receptor is a popular target for toxins Tetrameric glutamate receptors are defined by their specificity for glutamate analogs 9.8 TRIMERIC DEATH RECEPTORS Tumor necrosis factor binding to TNF receptors	446447449450451
to stimuli A human cell is a bag of potassium in a salty ocean Voltage-gated ion channels are activated by transmembrane differences in ion concentrations Pentameric Cys-loop receptors are gated by neurotransmitters The nicotinic acetylcholine receptor is a popular target for toxins Tetrameric glutamate receptors are defined by their specificity for glutamate analogs 9.8 TRIMERIC DEATH RECEPTORS Tumor necrosis factor binding to TNF receptors triggers diverse, cell-dependent responses 9.9 PATHWAYS CONTROLLED BY SMALL	 446 447 449 450 451 451 451
to stimuli A human cell is a bag of potassium in a salty ocean Voltage-gated ion channels are activated by transmembrane differences in ion concentrations Pentameric Cys-loop receptors are gated by neurotransmitters The nicotinic acetylcholine receptor is a popular target for toxins Tetrameric glutamate receptors are defined by their specificity for glutamate analogs 9.8 TRIMERIC DEATH RECEPTORS Tumor necrosis factor binding to TNF receptors triggers diverse, cell-dependent responses 9.9 PATHWAYS CONTROLLED BY SMALL DIFFUSIBLE GAS MOLECULES	 446 447 449 450 451 451 451 453
to stimuli A human cell is a bag of potassium in a salty ocean Voltage-gated ion channels are activated by transmembrane differences in ion concentrations Pentameric Cys-loop receptors are gated by neurotransmitters The nicotinic acetylcholine receptor is a popular target for toxins Tetrameric glutamate receptors are defined by their specificity for glutamate analogs 9.8 TRIMERIC DEATH RECEPTORS Tumor necrosis factor binding to TNF receptors triggers diverse, cell-dependent responses 9.9 PATHWAYS CONTROLLED BY SMALL DIFFUSIBLE GAS MOLECULES Oxygen levels are monitored through HIF-1α A nitric oxide receptor induces the production	 446 447 449 450 451 451 451 453 453
to stimuli A human cell is a bag of potassium in a salty ocean Voltage-gated ion channels are activated by transmembrane differences in ion concentrations Pentameric Cys-loop receptors are gated by neurotransmitters The nicotinic acetylcholine receptor is a popular target for toxins Tetrameric glutamate receptors are defined by their specificity for glutamate analogs 9.8 TRIMERIC DEATH RECEPTORS Tumor necrosis factor binding to TNF receptors triggers diverse, cell-dependent responses 9.9 PATHWAYS CONTROLLED BY SMALL DIFFUSIBLE GAS MOLECULES Oxygen levels are monitored through HIF-1α A nitric oxide receptor induces the production of cGMP	 446 447 449 450 451 451 451 453 453 454
to stimuli A human cell is a bag of potassium in a salty ocean Voltage-gated ion channels are activated by transmembrane differences in ion concentrations Pentameric Cys-loop receptors are gated by neurotransmitters The nicotinic acetylcholine receptor is a popular target for toxins Tetrameric glutamate receptors are defined by their specificity for glutamate analogs 9.8 TRIMERIC DEATH RECEPTORS Tumor necrosis factor binding to TNF receptors triggers diverse, cell-dependent responses 9.9 PATHWAYS CONTROLLED BY SMALL DIFFUSIBLE GAS MOLECULES Oxygen levels are monitored through HIF-1α A nitric oxide receptor induces the production	 446 447 449 450 451 451 451 453 453