COLLECTIVELY COMPACT OPERATOR APPROXIMATION THEORY and Applications to Integral Equations

PHILIP M. ANSELONE

Professor of Mathematics Oregon State University Corvallis, Oregon

With an Appendix by Joel Davis

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey

CONTENTS

chapter |

AN APPROXIMATION THEORY FOR COMPACT LINEAR OPERATORS |

1.1	Introduction	

- 1.2 Operator Norm Convergence 2
- 1.3 Collectively Compact Sets of Linear Operators 3
- 1.4 General Hypotheses 5
- 1.5 Pointwise Convergence of Operator Inverses 5
- 1.6 From Pointwise to Norm Convergence 7
- 1.7 Existence and Approximation of Operator Inverses 8
- 1.8 Convergence Theorems and Error Bounds 10
- 1.9 Concluding Remarks 12

chapter 2

APPROXIMATE SOLUTIONS OF INTEGRAL EQUATIONS 13

- 2.1 Introduction and Summary 13
- 2.2 The Quadrature Formula on & 15
- 2.3 Approximations of Integral Operators with Continuous Kernels 18
- 2.4 Determination of the Approximate Solutions 19
- 2.5 Error Bounds 21
- 2.6 The Banach Space R 22
- 2.7 The Quadrature Formula on R 23
- 2.8 Regular Sets 26
- 2.9 Integral Operators with Discontinuous Kernels 28
- 2.10 Operator Approximations 30

chapter 3

VARIANTS OF THE THEORY AND FURTHER APPLICATIONS 33

3.1	Introduction 33	
	Perturbations of Collectively Compact Operator Sequences .	33
3.3	Factorization of the Kernel 35	
	Volterra and Related Kernels 38	
3.5	Integral Equations Without Unique Solutions 41	
3.6	Integral Equations on [0,∞] 44	
3.7	Variants of the Approximation Theory 47	
3.8	Approximate Solutions of Transport Equations 51	
3.9	Boundary Value Problems for Partial Differential Equations	55
	Kernels of Finite Rank 56	

chapter 4

SPECTRAL APPROXIMATIONS 57

4.1	Introduction and Summary 37
4.2	Properties of Collectively Compact Sets 58
	Resolvent Sets and Spectra 60
4.4	Spectral Approximation Theorems 61
	Eigenvalues and Eigenvectors of Compact Operators 65
4.6	Generalized Eigenmanifolds 69
4.7	Functions of Operators 70
4.8	Spectral Projections and Spectral Subspaces 72
4.9	Eigenvalues and Generalized Eigenmanifolds Revisited 74
	Error Estimates for Eigenvectors 77

chapter 5

CHARACTERIZATIONS OF COLLECTIVELY COMPACT AND TOTALLY BOUNDED SETS OF OPERATORS 81

5 1	Introduction 81	
5.2	Bounded Sets of Compact Operators 82	
5.3	Collectively Compact and Totally Bounded Sets 82	
5.4	Collectively Compact Sets of Operators and Their Adjoints	8.
5.5	Totally Bounded Sets in Metric Spaces 86	
5.6	Proofs of Theorem 5.8 87	
<i>5.7</i>	Concluding Remarks 91	

chapter 6

APPROXIMATE SOLUTIONS OF NONLINEAR EQUATIONS 93

6.1	Introduction	93

- 6.2 Fréchet Differentiation 95
- 6.3 Newton's Method 98
- 6.4 Variations of the Kantorovich Theorem 102
- 6.5 A Perturbation Theorem 104
- 6.6 Convergence of Approximate Solutions 106
- 6.7 Equicontinuity, Equidifferentiability, and Collective Compactness 109

appendix |

BASIC PROPERTIES OF COMPACT LINEAR OPERATORS 113

appendix 2

NUMERICAL TREATMENT OF INTEGRAL EQUATIONS 121

BIBLIOGRAPHY 129

INDEX 137