Fortschritt-Berichte VDI

Reihe 4

Bauingenieurwesen

Dipl.-Ing. Jörg Härtel, Neustadt a. Rbge.

Nr. 159

Experimentelle und theoretische Untersuchungen zum Kriechverhalten hölzerner Druckstäbe unter baupraktischen Bedingungen

Inhaltsverzeichnis

n	haltsvei	zeichnis	<i>V</i>
1	Einle	citung	1
2		d der Forschung	
		gemeines zum Kriechen von Holzbauteilen	
	2.2 Ei	nfluss der Beanspruchungsart	4
	2.3 Ei	nfluss des Belastungsgrades	5
	2.4 Ei	nfluss der Prüfkörpergröße	7
	2.5 Ei	nfluss der Vorverformungen	8
	2.6 Ei	nfluss der Temperatur	9
	2.7 Ei	nfluss der Holzfeuchte	10
	2.7.1	Allgemeines	
	2.7.2	Einfluss der Holzfeuchte auf die elastischen Eigenschaften des Holzes	13
	2.7.3	Einfluss der Holzfeuchte auf die Querschnittsgeometrie	14
	2.7.4	Einfluss der Holzfeuchte auf die Biegesteifigkeiten	15
	2.7.5	Einfluss der Holzfeuchte auf die Materialfestigkeiten	16
	2.7.6	Einfluss der Holzfeuchte auf die Kriechverformungen	16
	2.8 St	rukturmechanische Deutung des Kriechens von Holzbauteilen	17
	2.8.1	Zusammensetzung und Aufbau des Holzes	
	2.8.2	Erläuterung der Kriechvorgänge im Holz	
3	Expe	rimentelle Untersuchungen	22
	3.1 Al	lgemeines zur Durchführung von Kriechversuchen	22
	3.2 Er	kenntnisse zum Kriechen hölzerner Druckstäbe in der Literatur	23
	3.3 AI	lgemeines zur Versuchsdurchführung	24
	3.4 De	finition der Versuchsrandbedingungen	25
	3.4.1	Materialauswahl	25
	3.4.2	Prüfkörperabmessungen	26
	3.4.3	Schlankheit der Prüfkörper	27
	3.4.4	Festlegung einer Lastausmitte	27
	3.4.5	Wahl des Belastungsniveaus	31
	3.4.6	Charakteristische Prüfkörpereigenschaften	33
	3.4	.6.1 Darr-Rohdichte	33
	3.4	.6.2 Elastizitätsmodul	34

	3.4.7	Sonstige Prüfkörpereigenschaften	35
3.	5 Bes	chreibung des Versuchsaufbaus	35
	3.5.1	Allgemeines zum Prüfrahmen	
	3.5.2	Fixierung der Prüfkörper vor Versuchsbeginn	40
	3.5.3	Messtechnische Überprüfung der aufgebrachten Belastungen	
3.	6 Me	sswerterfassung	
	3.6.1	Allgemeines	
	3.6.2	Verformungsmessungen	
	3.6.3	Holzfeuchtemessungen	44
3.	7 Pro	tokollierung der Messdaten	45
4		ntische Randbedingungen	
4.	1 All	gemeines	4
4.	2 Wa	hl der klimatischen Randbedingungen	4
4.	3 Va	riation der Versuchsreihen	48
4.	4 Au	swertung natürlicher Klimadaten	48
4.	5 Jah	reszeitliche Schwankungen des Klimas	5
4.	6 Ab	soluter Feuchtigkeitsgehalt in der umgebenden Luft	5
4.	.7 We	chselwirkungen zwischen Klima und Holzfeuchte	6
4.	8 Bei	ırteilung der klimatischen Versuchrandbedingungen	6
5	Versuchsergebnisse		
5.	.1 Um	fang des Versuchsprogramms	6.
5.	2 Da	rstellung der Versuchsergebnisse	7:
	5.2.1	Versuchsreihen mit Prüfkörpern aus Brettschichtholz	
	5.2.	1.1 Versuchsreihe BSH_1	
		1.2 Versuchsreihe BSH_II	
	5.2.	1.3 Versuchsreihe BSH_III	7
	5.2.2	Versuchsreihen mit Prüfkörpern aus Fichtenvollholz	
	5.2.	2.1 Versuchsreihe Fi_I	7
		2.2 Versuchsreihe Fi_II	
	5.2.	2.3 Versuchsreihe Fi_III	8
		2.4 Versuchsreihe Fi_IV	
5.	.3 Be	zogene Darstellung der Kriechverformungen	8
	5.3.1	Zusammengesetzte Verformungen	
	5.3.2	Bezogene Darstellung der Versuchsergebnisse	
6	Der S	Corptionseinfluß auf die Prüfkörpereigenschaften	9
6.		gemeines	9
6.	.2 Nu	merische Simulation des Sorptionsverhaltens	9

6	.2.1	Berechnungsgrundlagen der Finite-Element-Methode	9
6	.2.2	Modellierung des Viertelholzquerschnitts	9
6	.2.3	Beurteilung der Rechengenauigkeit des numerischen Modells	
6	.2.4	Numerische Berechnung der Flächenwerte	9
6.3	Fun	ktionale Beschreibung der Holzfeuchteverteilung	
6	.3.1	Mathematische Formulierung des Feuchteverlaufs	9
6	.3.2	Vergleichsrechnungen zum Feuchteverlauf	
6	.3.3	Feuchteabhängige Elastizitätszahlen und Ausdehnungskoeffizienten	10
6.4	Que	erschnittsgeometrie bei unterschiedlichen Ausgleichsfeuchten	10
6.5	Que	erschnittsgeometrie im Wechselklima	10
6.6	Sor	ptionsbedingte Änderungen der Flächenmomente 2. Grades	10
6.7	Der	feuchteabhängige Elastizitätsmodul	11
6.8	Bie	gesteifigkeiten der Prüfkörper im Wechselklima	11
6.9	Zus	ammenfassung	11
7 7		ie der Bemessungskonzepte	
7.1	Alls	gemeines	11
7.2		bemerkungen zur DIN 1052 und zum EUROCODE 5	
7.3	Gel	orauchstauglichkeit biegebeanspruchter Bauteile	11
	.3.1	Berücksichtigung der Kriechverformungen gemäß DIN 1052	
7	.3.2	Berücksichtigung der Kriechverformungen gemäß EUROCODE 5	
7.4	Kni	cksicherheit hölzerner Druckstäbe	12
	.4.1	Nachweis der Knicksicherheit gemäß DIN 1052	
7	.4.2	Nachweis der Knicksicherheit gemäß EUROCODE 5	
7.5	Spa	nnungstheorie II. Ordnung	13
	7.5.1	Tragsicherheit nach Spannungstheorie II. Ordnung gemäß DIN 1052	13
7	.5.2	Tragsicherheit nach Spannungstheorie II. Ordnung gemäß EUROCODE 5	
7.6	Vei	gleich der Imperfektionsannahmen beider Normenkonzepte	13
7.7	Ber	ücksichtigung des Kriechens bei Bauteilen aus Stahlbeton	13
7	7.7.1	Allgemeines	
7	7.7.2	Beton u. Stahlbeton nach DIN 1045 bzw. DAfStb. Heft 220	13
7	7.7.3	Spannbeton nach DIN 4227, Teil 1	
7	7.7.4	Stahlbeton und Spannbetontragwerke nach EUROCODE 2]4
7	7.7.5	Verbundkonstruktionen nach EUROCODE 4, Teil 1	1
8	Berec	hnungen nach Elastizitätstheorie II. Ordnung	14
8.1	All	gemeines	14
8.2		gsicherheitsnachweise gemäß DIN 1052 und EUROCODE 5	14
83	Rai	echnung der Stützenverformungen nach Theorie II. Ordnung	1.

:	8.4	Ve	rgleich der Berechnungen mit den Versuchsergebnissen	160
1	8.5	Üb	erprüfung der Gebrauchstauglichkeit	167
:	8.6	Kr	echfaktoren und relative Kriechzunahmen	169
9	Numerische Simulation des Kriechverhaltens			
	9.1		gemeines	
,	9.2		htlineares Werkstoffgesetz	
	9.3		schreibung des viskoelastischen Materialverhaltens	
	9.	3.1	Allgemeines zur funktionalen Beschreibung des Kriechens	
	9.	3.2	Ausgewählte Ansatzfunktionen zur Beschreibung des Kriechverhaltens	
		9.3	2.1 Potenzansatz	
		9.3	2.2 Standard-Festkörper-Modell	
		9.3	2.3 Burgers-Modell	182
		9.3	2.4 Verallgemeinertes Kelvin- bzw. Maxwell-Modell	183
		9.3	2.5 Erweitertes Standard-Festkörper-Modell	183
	9.	3.3	Einfluss der Holzfeuchte auf die Beschreibung des Kriechverhaltens	
	9.	3.4	Nichtlineare Regressionsanalyse	189
	9.	3.5	Bewertung der Residuen	
	9.	3.6	Statistische Auswertung der Regressionskoeffizienten	
	9.	3.7	Kurvenanpassung bei Kriechversuchen an hölzernen Druckstäben	192
		9.3	7.1 Allgemeines	192
			7.2 Vorgehensweise bei der Kurvenanpassung	193
		9.3	7.3 Kurvenanpassung bei Versuchsreihen unter konstanten Klimabedingungen	194
	*	9.3	7.4 Kurvenanpassung bei Versuchsreihen im Wechselklima	197
		9.3	7.5 Zusammenfassung	199
	9.4	Nu	merische Simulation des Tragverhaltens hölzerner Druckstäbe	201
	9.	4.1	Allgemeines	201
	9.	4.2	Simulation des nichtlinearen Tragverhaltens	201
	9.	4.3	Berücksichtigung des nichtlinearen Werkstoffverhaltens	202
	9.	4.4	Berücksichtigung der geometrischen Nichtlinearität	
	9.	4.5	Programmablauf	
10	В	ere	chnungen nach Plastizitätstheorie II. Ordnung	206
	10.1		Allgemeines	
	10.2		Spannungsumlagerungsvermögen des Querschnitts	
10.3		3	Traglastberechnung von Holzdruckstäben	207
	10.4		Numerische Simulation der Kriechverformungen	
11	L		ussion der Versuchsergebnisse	
			216	
	11.2		Vergleich der Kriechergebnisse von Biegeträgern und Druckstäben	
			Frachnisse von Kriechversuchen an Holzhiegeträgern aus der Literatur	

	11.2.2	Ergebnisse der durchgeführten Kriechversuche an Holzdruckstäben	217
	11.2.	2.1 Kriechfaktoren	217
	11.2.	2.2 Relative Kriechzunahmen	218
	11.2.	2.3 Zusammenfassung	219
1	1.3 V	erformungsberechnungen von Holzdruckstäben nach DIN 1052	220
1	1.4 T	ragsicherheitsnachweise gemäß DIN 1052 und EUROCODE 5	222
1	1.5 Be	emessungsverfahren und zeitabhängige Verformungen	223
	11.5.1	Allgemeines	223
	11.5.2	Knicksicherheitsnachweis nach DIN 1052	223
	11.5.3	Spannungstheorie II. Ordnung nach DIN 1052	227
	11.5.4	Knicksicherheitsnachweis nach EUROCODE 5	229
	11.5.5	Spannungstheorie II. Ordnung nach EUROCODE 5	229
	11.5.6	Zusammenfassung	230
12	Zusam	menfassung und Ausblick	232
Lite	raturve	rzeichnis	235