V.M. Agranovich V.L. Ginzburg

Crystal Optics with Spatial Dispersion, and Excitons

Second Corrected and Updated Edition

With 46 Figures

Springer-Verlag Berlin Heidelberg New York Tokyo 1984

PHYSIKALISCHE BIBLIOTHEK
FACHBEREICH 5
TECHNISCHE HOCHSCHULE
DARMSTADT

T/3140

Contents

1.		oduction	1
		Basic Problems of Crystal Optics	1
	1.2	Excitons and Polaritons	10
2.	The	Complex Dielectric-Constant Tensor $arepsilon_{ii}(\omega,k)$ and	
		rmal Waves in a Medium	18
	2.1	The Tensor $\varepsilon_{ij}(\omega, k)$ and Its Properties	18
		2.1.1 The Electromagnetic Field Equations and the Introduction	
		of the Tensor $\varepsilon_{ij}(\omega, k)$	18
		2.1.2 General Properties of the Tensor $\varepsilon_{ij}(\omega, \mathbf{k})$	27
		2.1.3 The Approximation of Classical Crystal Optics.	
		The Tensor $\varepsilon_{ij}(\omega, \mathbf{k})$ in an Isotropic Medium	37
	2.2	Normal Electromagnetic Waves in a Medium	42
		2.2.1 Wave Equation and Dispersion Equation	42
		2.2.2 Transverse and Longitudinal Waves, "Fictitious"	
		Longitudinal Waves and "Polarization Waves".	
		Real, Coulomb and Mechanical Excitons	47
		a) Coulomb Excitons: Longitudinal and "Fictitious"	
		Longitudinal Waves	51
		b) Coulomb Excitons: "Polarization Waves"	54
		2.2.3 Multiple Roots of the Dispersion Equation	57
		2.2.4 Separating the Transverse Field E_{\perp} and the Tensor $\varepsilon_{\perp,ij}$	62
		2.2.5 The Dispersion Relations for a Complex Refractive Index.	
		Inequalities for the Region of Transparency	66
	2.3	Energy Relations and Other Equations for Waves in	
		an Anisotropic Medium	72
		2.3.1 The Law of Energy Conservation in the Electrodynamics	
		of Media Displaying Spatial Dispersion	72
		2.3.2 Quadratic Functions of the Normal Wave Amplitudes	81
		a) The Conservation of Energy for a Field	83
		b) The Vector of Group Velocity	84
		c) The Conservation of Momentum for a Field	93
		d) Some Applications of the Poynting Theorem	94
		e) The Boundary Conditions for a Gyrotropic Medium	95

		f) The Boundary Conditions for the Optically Nonlinear Medium with the Center of Inversion	97
		g) Spatial Dispersion and Orthogonality of Normal	99
		Waves	100
		2.3.3 Certain Theorems for Ray and Wave Propagation in	100
			103
3.	The	Tensor $\varepsilon_{ii}(\omega,k)$ in Crystals	108
			108
			108
		3.1.2 Weak Spatial Dispersion	117
	3.2	The Tensor $\varepsilon_{ij}(\omega, \mathbf{k})$ for Crystals of Various Classes	122
			122
		3.2.2 Nongyrotropic Crystals	129
4.			136
	4.1		136
		, , ,	137
		4.1.2 A New Wave Near the Absorption Lines in a Gyrotropic	
			145
	4.2		149
			149
		4.2.2 Isotropic Medium and New Waves Near Dipole	
			150
			165
	4.3		167
		1 17 1	167
		1 17 % 1	171
		4.3.3 Classification of the States of 'Mechanical' Excitons with	
			174
		4.3.4 New Waves Near Quadrupole Absorption Lines.	40-
		S .	185
	4.4	Influence of Mechanical Stresses and External Electric and	400
			188
		4.4.1 Anisotropy of the Optical Properties and Selection Rules	400
			188
		4.4.2 The Explicit Dependence of the Tensor $\varepsilon_{ij}(\omega, k)$ on the	103
		Strength of Weak External Fields	192
		, ,	196
		4.4.3 Influence of Magnetic and Electric Fields on Cadmium	100
			198
	4.5		202
	4.5	Boundary Conditions in the Case of Spatial Dispersion	205
		Near a Separate Resonance (Absorption Line)	205

		4.5.1 The Tensor $\varepsilon_{ij}(\omega, k)$ Near an Isolated Resonance	208
			211
			216
		4.5.3 Boundary Conditions	218
		a) The Transition ("Dead") Layer Problem	224
		b) ABC for Molecular Crystals and the Surface Current	
			228
		4.5.4 Reflected and Refracted Waves Near Dipole and	
		Quadrupole Transition Frequencies in a Nongyrotropic	
		· · · · · · · · · · · · · · · · · · ·	233
			236
		4.5.5 Reflected and Refracted Waves Near a Dipole Transition	
			238
		4.5.6 The Influence of a Nonhomogeneous Subsurface Layer	
		-	242
		4.5.7 Transmission of Light Through a Plane-Parallel Plate	
			244
		4.5.8 Transmission of Light Through a Plane-Parallel Plate	
			248
			247
	46		253
	4.0	1 1 1	253
			257
		4.0.2 Proligyrotropic Crystals	231
		•	
5.	Sur	face Excitons and Polaritons	271
	5.1	Polaritons at the Interface of Isotropic Media	271
		5.1.1 Dispersion of Surface Waves for Lossless Media	274
		5.1.2 General Case	274
		5.1.3 Surface Polaritons for Layered Structures	275
		· · · · · · · · · · · · · · · · · · ·	278
			279
		c) Reflection, Diffraction and Refraction of Surface	
			280
	5.2	Spectra of Surface Polaritons in Anisotropic Crystals	283
			289
			290
		5.3.2 Transition Layers in the Presence of a Resonance with	
			294
			294
		b) Polariton Spectrum Splitting for TH Surface Waves	295
		c) TE Surface Waves in the Transition Layers' Resonance	
		Region	298
		5.3.3 Effect of Surface Roughness (Irregularities) on the Path	
	*	Length of Surface Polaritons	301
		Length of Bullace I Garitons	201

		a) Surface Polariton Scattering in the Vicinity of	
		Phase-Transition Points	302
	5.4	Effect of Spatial Dispersion on the Spectra of Surface	
		Polaritons, and Additional ("New") Surface Waves	303
		5.4.1 Surface Electromagnetic Waves at the Right-Left	
		Gyrotropic Cystal Interface	311
	5.5	Experimental Investigations of Surface Polaritons	314
		5.5.1 The Attenuated Total Reflection (ATR) Method	315
		5.5.2 The Ruled Diffraction-Grating Method	319
		5.5.3 Raman Scattering of Light by Surface Polaritons	319
		5.5.4 Surface Polariton Propagation Over Long Distances.	
		Crystal Optics of Surfaces	323
		5.5.5 The Inelastic Low-Energy Electron Scattering (ILES)	
		Method	324
		5.5.6 Nonlinear Surface Electromagnetic Waves	325
		<u> </u>	
6.	Mic	Proscopic Theory. Calculation of the Tensor $\varepsilon_{ij}(\omega, \mathbf{k})$	328
		General Expressions for $\varepsilon_{ii}(\omega, k)$	328
		6.1.1 Quantum-Mechanical Derivation of $\varepsilon_{ij}(\omega, k)$	328
		6.1.2 Contribution of the Exciton States to the Tensor $\varepsilon_{ii}(\omega, k)$	337
		a) Refractive Index Near Exciton Resonances of	
		Anisotropic Crystals	340
	6.2	Mechanical Excitons and the Tensor $\varepsilon_{ii}(\omega, k)$ in Molecular	
		Crystals and in the Classical Oscillator Model	342
		6.2.1 Molecular Crystals. Mechanical Excitons	342
		6.2.2 Calculating the Dielectric-Constant Tensor of Molecular	
		Crystals by the Local-Field Method	348
		a) Davydov Splitting	351
		6.2.3 The Oscillator Model	353
	6.3	Absorption	356
		6.3.1 The Absorption Mechanism. Absorption in a First	
		Approximation	356
		6.3.2 Absorption of Normal Electromagnetic Waves in the	
		Vicinity of an Exciton Transition Frequency	361
		6.3.3 The Long-Wavelength Edge of the Exciton Absorption	
		Bands: Raman and Brillouin-Mandelstam Scattering of	
		Polaritons	363
	6.4	Raman Scattering of Light and X Rays Accompanied by Exciton	
		Production. Influence of Spatial Dispersion on Energy Losses,	
		and on Cherenkov and Transition Radiation of Charged	
		Particles	367
		6.4.1 Raman Scattering of X Rays Accompanied by Exciton	
		Production	368
		6.4.2 Raman Scattering of Light by Polaritons	373
		a) Raman Scattering of Light by Bulk Polaritons	373

	Contents	ΛI
b) General Expression for the Scattering In	ntensity	378
c) The Scattering Cross Section by Polarit	•	380
d) Raman Scattering of Light by Surface F		383
e) Compensation Effect		387
f) Broken Symmetry Method		389
g) Coherent Anti-Stokes Raman Spectroso		393
6.4.3 Energy Losses and Cherenkov Radiation	,	
Travelling with Uniform Motion Through	_	
Displaying Spatial Dispersion. Transition		396
1 7 6 1		
7. Conclusion		402
Appendix		406
A.1 Crystal-Symmetry Notation		406
A.2 Information from Space Group Theory		409
A.2.1 Classification of the States of Mechanica	Excitons	414
Notation		417
References		419
Micronecs		717
Subject Index		437