Geometrodynamics of Gauge Fields

On the Geometry of Yang-Mills and Gravitational Gauge Theories

by Eckehard W. Mielke

With 11 Figures

Akademie-Verlag Berlin 1987

CONTENTS

١.	INTRODUCTION AND HISTORICAL BACKGROUND	9
II.	GEOMETRY OF GAUGE FIELDS	17
	1. Differentiable manifolds	18
	2. Tensor fields and exterior forms	20
	3. Fibre bundles as an enlarged geometrical arena	22
	4. Associated bundles and physical fields	25
	5. Connection and covariant derivative	26
	6. Curvature	29
	7. Gauge transformations	31
	8. Digression: The Lagrangian formalism	32
	9. G-equivalence principle	34
	10. Yang-Mills fields	36
	11. Topological invariants	40
	12. Instantons	44
	13. Higgs fields	47
	14. Translation of terminologies	51
111.	GRAVITATION AS A GAUGE THEORY	52
	1. Affine frames	53
	2. Affine gauge theory with torsion	57
	3. Geometrical structure of the Poincaré gauge theory	62
	4. Gravitational field equations and conservation laws	. 68
	5. Quadratic Poincaré gauge theories	72
	6. Einstein-Cartan theory	76
	7. Reduction of the general field equations by means of duality rotations	85
	8. Double dual subspaces of SKY-gravity	92
	9. Exact solutions and gravitational instantons	95
	10. Topological invariants on manifolds	100
	11. Quantum meaning of gravitational instantons	103
IV.	NONLINEAR SPINOR THEORIES	105
	1. Global spinor fields	105
	2. Nonlinear Heisenberg-Pauli-Weyl spinor equation	113
	3. Soliton-type solutions of a nonlinear Dirac equation	118
	4. Comments on the quantum-theoretical meaning of nonlinear,	
	classical field theories	128

7

v.	GEOMETRODYNAMICS AND ITS EXTENSIONS	131
	1. Rainich geometrization of electromagnetic fields	1 34
	2. Non-Abelian Kaluza-Klein theories	142
	3. Fermion spectrum from higher-dimensional models	1 50
	4. Kerr-Newman solution	155
	5. Tensor dominance model of strong interaction	1 59
	6. Einstein-Cartan theory with internal degrees of freedom	166
VI.	PROSPECT: IS QUARK CONFINEMENT FOUNDED ON THE	
	GEOMETRICAL STRUCTURE OF SPACE-TIME?	172
API	PENDIX A: NOTATIONS AND MATHEMATICAL TERMS	I 8 0
API	PENDIX B: CALCULUS OF EXTERIOR DIFFERENTIAL FORMS	184
API	PENDIX C: LIE GROUPS	190
REI	FERENCES	193

• -

, 8