Aerodynamics of Low Reynolds Number Flyers

WEI SHYY

University of Michigan

YONGSHENG LIAN

University of Michigan

JIAN TANG University of Michigan

DRAGOS VIIERU University of Michigan

HAO LIU Chiba University

Contents

à

No	omenclature	<i>page</i> xi
Lis	st of Abbreviations	xv
Pre	eface	xvii
1	Introduction	1
	1.1 Flapping Flight in Nature	6
	1.1.1 Unpowered Flight: Gliding and Soaring	7
	1.1.2 Powered Flight: Flapping	8
	1.1.3 Hovering	9
	1.1.4 Forward Flight	10
	1.2 Scaling	14
	1.2.1 Geometric Similarity	16
	1.2.2 Wingspan	17
	1.2.3 Wing Area	17
	1.2.4 Wing Loading	18
	1.2.5 Aspect Ratio	18
	1.2.6 Wing-Beat Frequency	19
	1.3 Power Implication of a Flapping Wing	20
	1.3.1 Upper and Lower Limits	21
	1.3.2 Drag and Power	23
	1.4 Concluding Remarks	26
2	Fixed, Rigid-Wing Aerodynamics	28
	2.1 Laminar Separation and Transition to Turbulence	29
	2.1.1 Navier–Stokes Equation and the Transition Model	35
	2.1.2 The e^N Method	37
	2.1.3 Case Study: SD7003	39
	2.2 Factors Influencing Low Reynolds Number Aerodynamic	
	$2.2.1 \ Re = 10^3 - 10^4$	45
	2.2.2 $Re = 10^4 - 10^6$	47
	2.2.3 Effect of Free-Stream Turbulence	50
	2.2.4 Effect of Unsteady Free-Stream	54

	2.3 Three-Dimensional Wing Aerodynamics	57
	2.3.1 Unsteady Phenomena at High Angles of Attack	61
	2.3.2 Aspect Ratio and Tip Vortices	63
	2.3.3 Wingtip Effect	70
	2.3.4 Unsteady Tip Vortices	73
	2.4 Concluding Remarks	76
3	Flexible-Wing Aerodynamics	78
	3.1 General Background of Flexible-Wing Flyers	78
	3.2 Flexible-Wing Models	85
	3.2.1 Linear Membrane Model	85
	3.2.2 Hyperelastic Membrane Model	89
	3.2.3 Combined Fluid-Structural Dynamics Computation	91
	3.3 Coupled Elastic Structures and Aerodynamics	92
	3.3.1 Flexible Airfoils	92
	3.3.2 Membrane-Wing Aerodynamics	94
	3.4 Concluding Remarks	100
4	Flapping-Wing Aerodynamics	101
	4.1 Scaling, Kinematics, and Governing Equations	102
	4.1.1 Flapping Motion	102
	4.1.2 Reynolds Number	106
	4.1.3 Strouhal Number and Reduced Frequency	107
	4.2 Nonstationary Airfoil Aerodynamics	109
	4.2.1 Dynamic Stall	111
	4.2.2 Thrust Generation of a Pitching/Plunging Airfoil	114
	4.3 Simplified Flapping-Wing Aerodynamics Model	117
	4.4 Lift-Enhancement Mechanisms in Flapping Wings	122
	4.4.1 Leading-Edge Vortex	124
	4.4.2 Rapid Pitch-Up	131
	4.4.3 Wake Capture	134
	4.4.4 Clap-and-Fling Mechanism	136
	4.4.5 Wing Structural Flexibility	138
	4.5 Effects of Reynolds Number, Reduced Frequency, and	
	Kinematics on Hovering Aerodynamics	144
	4.5.1 Hovering Kinematics	144
	4.5.2 Scaling Effect on Force Generation for Hovering	
	Airfoils	148
	4.6 Aerodynamics of a Hovering Hawkmoth	151
	4.6.1 Downstroke	152
	4.6.2 Supination	153
	4.6.3 Upstroke	155
	4.6.4 Pronation	155

١

ł

155

156

157

159

175