

With 31 Figures

Springer-Verlag

Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest

Contents

1.	Intro	oduction	1
2.	Qual	litative Theory of Radiationless Transitions	5
	2.1	Balance Equation	5
	2.2	Experimental Observations and Empirical Rules	8
	2.3	Molecular Energy Level Model	12
	2.4	Physical Nature of Radiationless Transitions	15
		2.4.1 The Nature of the Initial State	15
		2.4.2 Freed-Jortner Irreversibility Criterion	25
	2.5	General Description of Luminescence Kinetics:	
		Intermediate Case and Statistical Limit	27
		2.5.1 Strong Coupling	30
		2.5.2 Experimental Criterion for the Statistical Limit	36
		2.5.3 Upper Limit for Radiationless Transition Rates	36
		2.5.4 Weak Coupling	38
	2.6	Strong-Coupling Limit	39
		2.6.1 The Bixon-Jortner Model	39
		2.6.2 Inclusion of Level Broadening	46
		2.6.3 Mono- and Biexponential Decays	48
	2.7	Weak-Coupling Limit	53
		2.7.1 The Role of Vibrational Relaxation	
		in the Final Electronic State	53
		2.7.2 The Robinson—Frosch Theory	55
		2.7.3 The Trifonov-Shekhtman Model	60
	• •	2.7.4 Periodic Quantum Beats and Biexponential Decay	63
	2.8	Time-Dependent Perturbation Theory	68
	2.9	Comparison of Various Expressions for the Transition Rate.	72
		Characterization of the Final States of an Isolated Molecule	74
	2.11	Small, Large and Intermediate Molecules	80
3.		inescence Intensity as a Function of Time	
	and	the Radiationless Transition Rate	89
	3.1	Formulation of the Problem	89
	3.2	Laplace Transformation, Green's Functions	
		and Resonant States	92
	3.3	Computation of the Green's Functions	95
	3.4	Evolution of the Initial State and the Luminescence Intensity	98

VI	II	. Contents	
	3.5	Resonant States	101
	3.3	3.5.1 Small Molecules	101
		3.5.2 Intermediate Case	102
		3.5.3 Statistical Limit	110
	3.6	Method of Projection Operators	112
	3.0	wethou of Flojection Operators	112
4.	Mat	rix Elements of Intramolecular Interactions	118
	4.1	Adiabatic Approximation	118
	4.2	Accuracy of the Adiabatic Approximation	128
	4.3	Crude Adiabatic Approximation	135
	4.4	Coupling Operators	138
		4.4.1 Nonadiabatic Coupling	138
		4.4.2 Spin—Orbit Coupling	139
		4.4.3 Rotational Matrix Elements	144
		4.4.4 Coriolis Coupling	150
	4.5	Condon Approximation	152
	4.6	Model of Noninteracting Oscillators	159
	4.7	Mechanisms and Selection Rules	
		for Radiationless Transitions	164
	4.8	Overlap Integrals for Harmonic and Morse Oscillators	170
5	Ona	siclassical Methods	175
٥.	5.1	Introductory Remarks	176
	5.2	Overlap Integral for a Harmonic Oscillator	178
		5.2.1 Basic Derivation	178
		5.2.2 Conditions for Applicability	170
		of the Quasiclassical Approximation	189
		5.2.3 Comparison of Frequency and Displacement Effects	190
	5.3	Overlap Integral for an Anharmonic Oscillator	192
	5.5	5.3.1 Morse Oscillator with $\Delta \alpha = 0$	192
		5.3.2 Morse Oscillator with $\Delta \alpha = 0$ and Arbitrary Potentials .	201
		5.3.3 Selection Rule for the Morse Oscillator	204
	5.4	Franck—Condon Principle for Radiationless Transitions	207
	J. 4	5.4.1 General Formulation	207
		5.4.2 Real and Complex Term Intersections	208
		5.4.3 Classical Franck—Condon Factor	209
		5.4.4 Franck—Condon Principle and the Selection Rules	211
	5.5	Transitions Between Parallel Terms	212
	ر.ر	5.5.1 Model of Parallel Terms	213
		5.5.2 Tunneling Nonradiative and Radiative Transitions	215
	5.6	Overtone Vibrational Transitions	219
	2,0	5.6.1 Derivation of the Quasiclassical Formula	220
		5.6.2 Comparison with Exact Calculations	225
		2.0.2 Comparison with Laure Calculations	

5.6.3 Normal Intensity Distributions

5.6.4 Dynamical Tunneling Depth

5.6.5 Intensity Anomalies in Absorption Spectra

228

233

234

Contents	IX			
5.7 Collision Model 5.7.1 Transition Matrix in the Linear Model 5.7.2 Perturbation Theory for Nonadiabatic Transitions 5.7.3 Method of the Classical \(\mathcal{S}\$-Matrix 5.8 Two-State Vibronic Levels	237 239 254 259 261			
6. The Statistical Limit 6.1 Accepting Modes, Effective States and the Transition Rate 6.2 Generating-Function Method 6.3 Saddle-Point Method 6.3.1 First Saddle-Point Approximation (FSPA) 6.3.2 Validity Conditions for the FSPA 6.3.3 Saddle-Point Method Versus Effective-States Method 6.4 Single Vibronic Level (SVL) Transition-Rate Dependence	266 266 274 278 278 281 290			
upon Initial Vibrational Energy 6.5 Transition Rate from Statistically Equilibrated Initial States 6.6 Summation of the Franck—Condon Factors 6.7 Inductive-Resonant-Transfer Mechanism	290 296 303 305			
7. The Intermediate Case 7.1 Physical Effects 7.1.1 Absorption Spectra and Luminescence Kinetics 7.1.2 Pressure Dependence of the Transition Rate 7.1.3 Energy-Gap Dependence 7.1.4 Vibrational and Rotational Energy Dependence 7.1.5 Deuteration Effect 7.1.6 Comparative Description of the Intermediate Case and the Statistical Limit	310 310 311 312 313 315 317			
7.2 Correlation-Function Method7.3 Kinetic Model	318 329			
8. Conclusion	332			
Appendix. Commutation Rules for Angular Momentum in the Laboratory and Molecular Frame				
References				
Subject Index				