# Lecture Notes in Economics and Mathematical Systems

Managing Editors: M. Beckmann and H. P. Künzi

### 175

# S. K. Srinivasan R. Subramanian

## Probabilistic Analysis of Redundant Systems



Fachbereich Mathematik Technische Hochschule Darmstadt Bibliothek

donv-1No. R 18174

Springer-Verlag Berlin Heidelberg New York 1980

#### CONTENTS

| 1 | REDUNDANT SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|
|   | <ul> <li>1.1 Introduction</li> <li>1.2 Repairable Systems</li> <li>1.3 2-Unit Standby Redundant Systems</li> <li>1.4 Parallel Redundant System</li> <li>1.5 Multiple Unit Systems</li> <li>1.6 Gnedenko Systems</li> <li>1.7 Systems with Imperfect Switchover</li> <li>1.8 Priority Redundant Systems</li> <li>1.9 Intermittently Used Systems</li> <li>1.10 Optimization Problems in Reliability</li> <li>1.11 Scope of the Present Work</li> </ul>                | 1<br>2<br>3<br>5<br>5<br>7<br>7<br>7<br>8<br>9<br>10<br>10 |  |
| 2 | RENEWAL THEORY AND POINT PROCESSES                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13-49                                                      |  |
|   | <ul> <li>2.1 Introduction</li> <li>2.2 Renewal Process</li> <li>2.3 Stationary Point Processes</li> <li>2.4 Special Point Processes</li> <li>2.4a Stationary Renewal Processes</li> <li>2.4b Alternating Renewal Processes</li> <li>2.4c Markov Renewal Processes</li> <li>2.5 Regenerative Processes</li> <li>2.6 Multivariate Point Processes</li> </ul>                                                                                                           | 13<br>16<br>25<br>37<br>37<br>38<br>41<br>45<br>48         |  |
| 3 | COLD STANDBY SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50 <b>-80</b>                                              |  |
| 、 | <ul> <li>3.1 Introduction</li> <li>3.2 Reliability Analysis</li> <li>3.3 Availability Analysis</li> <li>3.4 Multivariate Point Process of the Events E<sub>1</sub></li> <li>3.5 Steady State Characteristics</li> <li>3.6 Visits to Different States and Sojourn times</li> <li>3.7 Special Cases</li> <li>3.7 Lifetime Exponentially Distributed</li> <li>3.7 Repair Time Exponentially Distributed</li> <li>3.8 Cold Standby System of Dissimilar Units</li> </ul> | 50<br>52<br>60<br>62<br>69<br>72<br>72<br>76<br>77         |  |
| 4 | WARM STANDBY SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81-107                                                     |  |
|   | 4.1 Introduction<br>4.2 Reliability and Availability Analysis<br>4.3 Characterization of $\overline{E}_1$ events                                                                                                                                                                                                                                                                                                                                                     | 81<br>82<br>88                                             |  |
|   | <ul> <li>4.4 Steady State Characteristics</li> <li>4.5 Dissimilar Units</li> <li>4.6 Special Cases</li> <li>4.7 Numerical Results</li> </ul>                                                                                                                                                                                                                                                                                                                         | 90<br>92<br>98<br>104                                      |  |

4.7 Numerical Results

,

| 5      | WARM STANDBY SYSTEMS WITH AN IMPERFECT SWITCHOVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108-155                                                                          |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|        | <ul> <li>5.1 Introduction</li> <li>5.2 Problem Description and Notation</li> <li>5.3 Reliability Analysis</li> <li>5.4 Availability Analysis</li> <li>5.5 A System of Dissimilar Units</li> <li>5.5 Reliability Analysis</li> <li>5.5 Availability Analysis</li> <li>5.6 System with Identical Units</li> <li>5.6 Reliability Analysis</li> <li>5.6 Availability Analysis</li> <li>5.6 Availability Analysis</li> <li>5.6 Availability Analysis</li> <li>5.7 Numerical Results</li> </ul>                                                                           | 108<br>109<br>111<br>113<br>124<br>127<br>131<br>135<br>137<br>138<br>140        |
| 6      | WARM STANDBY SYSTEMS WITH AN IMPERFECT SWITCHOVER<br>AND A SINGLE REPAIR FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 156-185                                                                          |
|        | <ul> <li>6.1 Introduction</li> <li>6.2 General Analysis</li> <li>6.3 Reliability Analysis</li> <li>6.4 Availability Analysis</li> <li>6.5 The Effect of Preemptive Priorities in<br/>Service on Reliability Measures</li> <li>6.6 System with Dissimilar Units</li> <li>6.7 Numerical Results</li> </ul>                                                                                                                                                                                                                                                            | 156<br>156<br>158<br>163<br>165<br>169<br>172                                    |
| -<br>7 | INTERMITTENTLY USED COLD STANDBY SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 186-218                                                                          |
| -      | <ul> <li>7.1 Introduction</li> <li>7.2 Formulation of the Problem</li> <li>7.3 One Unit System with a Repair Facility</li> <li>7.4 Two Unit System with Single Repair Facility</li> <li>7.5 Numerical Results</li> <li>7.5a One Unit System</li> <li>7.5b Two Unit System</li> </ul>                                                                                                                                                                                                                                                                                | 186<br>187<br>189<br>192<br>201<br>201<br>201                                    |
| 8      | INTERMITTENTLY USED TWO UNIT SYSTEMS: WARM STANDBY<br>REDUNDANCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 219-259                                                                          |
|        | <ul> <li>8.1 Introduction</li> <li>8.2 Formulation of the Problem</li> <li>8.2a P.d.f. of the Time to the First D-event</li> <li>8.2b Mean Number of D-events</li> <li>8.2c Mean Square Number of D-events</li> <li>8.2d Duration of Disappointment</li> <li>8.3 A System of Dissimilar Units: Standby<br/>under Perpetual Vigil</li> <li>8.3a P.d.f. of the Time to the First D-event</li> <li>8.3b Mean Number of D-events</li> <li>8.3c Mean Square Number of D-events</li> <li>8.3d Expected Duration of Disappointments</li> <li>8.3e Special Cases</li> </ul> | 219<br>219<br>225<br>227<br>229<br>231<br>232<br>236<br>238<br>241<br>243<br>244 |

- 8.3d Expected Jura 8.3e Special Cases

| 9.1Priority Systems2609.2The Model2609.3Analysis of the Model2629.4Preemptive Repair2639.4aReliability Analysis2659.4bAvailability Analysis2669.5Nonpreemptive Repair2729.5aReliability Analysis2729.5bArailability Analysis2729.5bArailability Analysis2729.5bArailability Analysis2729.5bArailability Analysis2729.6Cold Standby System2759.6aPreemptive Repair2759.6bNonpreemptive Repair2769.7Optimization Model2779.8Numerical Results27810.1Introduction28910.2Model 1: Single Repair Facility29010.2Model 1: Single Repair Facility29010.2Model 1: Single Repair Facility29010.2The Birth and Death Process29110.2Model 2: r-repair Facilities29710.3System Description29110.5The Birth and Death Process Associated29610.5The Birth and Death Process Associated20110.5System Description29310.5The Birth and Death Process Associated20110.5Explicit Solution for the case m=2 and r=130110.5Explicit Solution for the case m=5 and r=330710.6Numerical Results |      | 8.4a<br>8.4b<br>8.4c<br>8.4d                                                                                               | Warm Standby Redundancy in which Failures are<br>Detected only During Need Periods<br>Behaviour of the Sub-system in Standby<br>Stochastic Process of a-events<br>Stochastic Process of D-events<br>Duration of Disappointment<br>Special Cases                                                                                                                                                 | 246<br>248<br>251<br>253<br>256<br>258                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 9.2The Model2609.3Analysis of the Model2629.4Freemptive Repair2639.4aReliability Analysis2669.5Nonpreemptive Repair2729.5aReliability Analysis2729.5bAvailability Analysis2729.5bAvailability Analysis2729.6Cold Standby System2759.6cDid Standby System2759.6dNonpreemptive Repair2769.7Optimization Model2779.8Numerical Results2780MULTICOMPONENT SYSTEMS289-34110.1Introduction28910.2Model 1: Single Repair Facility29010.2aSystem Description29010.2bThe Birth and Death Process29110.2cTime to System Failure (TSF)29410.2dAvailability Analysis29610.3The Birth and Death Process Associated29710.3aSystem Description29710.3aSystem Description29810.3cTime to System Failure30010.4Explicit Solution for the Case m=2 and r=130110.5Explicit Solution for the Case m=5 and r=330710.6Numerical Results31310.7Optimization Problems31310.8n-unit System with Arbitrary Repair Rate32810.8Availability Analysis33110.8Availability Analysis331                   | 9    | PRIORI                                                                                                                     | TY STANDBY REDUNDANT SYSTEMS                                                                                                                                                                                                                                                                                                                                                                    | 260 <b>-</b> 288                                                                                      |
| 10.1Introduction28910.2Model 1: Single Repair Facility29010.2aSystem Description29010.2bThe Birth and Death Process29110.2cTime to System Failure (TSF)29410.2dAvailability Analysis29610.3Model 2: r-repair Facilities29710.3aSystem Description29710.3bThe Birth and Death Process Associated29810.3cTime to System Failure30010.3cTime to System Failure30010.3dAvailability Analysis30010.3dAvailability Analysis30010.4Explicit Solution for the case m=2 and r=130110.5Explicit Solution for the Case m=5 and r=330710.6Numerical Results31310.7Optimization Problems31310.8cn-unit System with Arbitrary Repair Rate32810.8cThe 3-unit System33210.9cAvailability Analysis33610.9cA More General Model338                                                                                                                                                                                                                                                         |      | 9.2<br>9.4<br>9.4<br>9.5<br>9.5<br>9.5<br>9.5<br>6<br>0<br>9.6<br>0<br>9.6<br>0<br>9.6<br>0<br>9.6<br>0<br>9.6<br>0<br>9.7 | The Model<br>Analysis of the Model<br>Preemptive Repair<br>Reliability Analysis<br>Availability Analysis<br>Nonpreemptive Repair<br>Reliability Analysis<br>Cold Standby System<br>Preemptive Repair<br>Nonpreemptive Repair<br>Optimization Model                                                                                                                                              | 260<br>262<br>263<br>263<br>272<br>272<br>272<br>275<br>275<br>275<br>275<br>276<br>277               |
| 10.2Model 1: Single Repair Facility29010.2aSystem Description29010.2bThe Birth and Death Process<br>Associated with the Spares29110.2cTime to System Failure (TSF)29410.2dAvailability Analysis29610.3Model 2: r-repair Facilities29710.3aSystem Description29710.3bThe Birth and Death Process Associated<br>with the Spares29810.3cTime to System Failure30010.3dAvailability Analysis30010.3dAvailability Analysis30010.3dAvailability Analysis30010.4Explicit Solution for the case m=2 and r=130110.5Explicit Solution for the Case m=5 and r=330710.6Numerical Results31310.7Optimization Problems31310.8n-unit System with Arbitrary Repair Rate32810.8aReliability Analysis33110.8cThe 3-unit Systems33410.9aReliability Analysis33510.9bAvailability Analysis33510.9bAvailability Analysis33510.9bAvailability Analysis33610.9cA More General Model338                                                                                                          | .0   | MULTIC                                                                                                                     | COMPONENT SYSTEMS                                                                                                                                                                                                                                                                                                                                                                               | 289-341                                                                                               |
| 10.7Optimization Problems31310.8n-unit System with Arbitrary Repair Rate32810.8aReliability Analysis32910.8bAvailability Analysis33110.8cThe 3-unit System33210.9Gnedenko Systems33410.9aReliability Analysis33510.9bAvailability Analysis33510.9cA More General Model338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 10.2<br>10.2a<br>10.2b<br>10.2c<br>10.2d<br>10.3<br>10.3a<br>10.3b<br>10.3c<br>10.3c<br>10.3c                              | Model 1: Single Repair Facility<br>System Description<br>The Birth and Death Process<br>Associated with the Spares<br>Time to System Failure (TSF)<br>Availability Analysis<br>Model 2: r-repair Facilities<br>System Description<br>The Birth and Death Process Associated<br>with the Spares<br>Time to System Failure<br>Availability Analysis<br>Explicit Solution for the case m=2 and r=1 | 290<br>290<br>291<br>294<br>296<br>297<br>297<br>297<br>298<br>300<br>300<br>301<br>307               |
| Author Index 352<br>Subject Index 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Refe | 10.7<br>10.8<br>10.8a<br>10.8b<br>10.8c<br>10.9<br>10.9a<br>10.9b<br>10.9c<br>erences                                      | Optimization Problems<br>n-unit System with Arbitrary Repair Rate<br>Reliability Analysis<br>Availability Analysis<br>The 3-unit System<br>Gnedenko Systems<br>Reliability Analysis<br>Availability Analysis<br>A More General Model                                                                                                                                                            | 313<br>313<br>328<br>329<br>331<br>332<br>334<br>335<br>336<br>335<br>336<br>338<br>335<br>338<br>332 |