CONSTRADO MONOGRAPHS

Composite Structures of Steel and Concrete

. 11

Volume 1. Beams, Columns, Frames and Applications in Building

R. P. JOHNSON, MA, MICE, FIStructE Professor of Civil Engineering, University of Warwick

)

BIBLIOTHEK Konstruktiver Ingenieurbau TU Darmstadt, FB 13 Petersenstraße 12 64287 Darmstadt

Crosby Lockwood Staples London

Contents

Preface Notati Forew	on	v xi xv
Chapte	er 1 Introduction	
1.1	Composite Beams and Slabs	1
1.2	Composite Columns and Frames	5
1.3	Design Philosophy	6
1.4	Properties of Materials and Shear Connectors	9
1.5	Loading	11
1.6	Methods of Analysis and Design	13
Chapte	er 2. Shear Connection	
2.1	Introduction	18
2.2	Simply Supported Beam of Rectangular Cross-section 2.2.1 No shear connection 2.2.2 Full interaction	19
2.3	Uplift	24
2.4	Methods of Shear Connection 2.4.1 Bond 2.4.2 Shear connectors 2.4.3 Corrugated metal decking	25

viii Contents

2.5	Tests on Shear Connectors	29
2.6	Partial Interaction	33
2.7	Effect of Slip on Stresses and Deflections	36

Chapter 3. Simply Supported Composite Beams and Slabs

3.1	Design Methods	40		
3.2	The Design Example	41		
3.3	The Floor Slab	42		
	3.3.1 Example. The floor slab			
3.4	Flexural Strength of Composite Beams3.4.1 Moment of resistance3.4.2 Example. Flexural strength of composite beam	45		
3.5	Number and Spacing of Shear Connectors 3.5.1 Example. Number and spacing of shear connectors	49		
3.6	Transverse Reinforcement in the Slab3.6.1 Design method3.6.2 Longitudinal shear in haunched beams3.6.3 Limits to the applicability of the design method3.6.4 Detailing of transverse reinforcement3.6.5 Comparison with other design methods3.6.6 Lightweight-aggregate concrete3.6.7 Example. Transverse reinforcement in the slab3.6.8 Use of precast concrete slabs	54		
3.7	Stresses and Deflections in Service	66		
	 3.7.1 Formulae for full-interaction elastic analysis of cross-sections 3.7.2 Example. Stresses in service 3.7.3 Limiting deflections, and the use of span-depth ratios 3.7.4 Example. Deflection in service 			
3.8	Effects of Shrinkage of Concrete and of Temperature			
3.9	Partial-interaction Design 3.9.1 Example. Partial-interaction design	76 76		
3.10	Form-reinforced Composite Slabs 3.10.1 Properties of cold-formed steel decking 3.10.2 Design of form-reinforced slab 3.10.3 Example			
3.11	Composite Beams Supporting Form-reinforced Slabs 3.11.1 Slab with ribs parallel to the steel beam 3.11.2 Slab with ribs at right angles to the steel beam	90		

3.11.3 Example

m n v d

is rr

in oi e:

n

h

hé

or

ιp In

je

i

	Contents	ix
3.12	Vibration of Long-span Composite Floors 3.12.1 Example. Vibrational behaviour of the floor structure	96
Chapte	er 4. Continuous Composite Beams	
4.1	Design Methods for Beams in Buildings	101
4.2	The Design Example	103
4.3	Negative-moment Regions of Continuous Composite Beams 4.3.1 Negative moment of resistance 4.3.2 Use of simple plastic theory for composite beams	104.
	 4.3.3 Example. Negative moment of resistance 4.3.4 Vertical shear 4.3.5 Example. Vertical shear 4.3.6 Longitudinal shear 4.3.7 Example. Shear connection and transverse reinforcement 	
4.4	 The Applicability of Simple Plastic Theory 4.4.1 Moment redistribution in a fixed-ended beam 4.4.2 Local buckling in negative-moment regions 4.4.3 Strain hardening and its effects 4.4.4 Rotation capacity of positive-moment regions 4.4.5 Example. Applicability of plastic theory 	115
4.5	 Elastic Analysis for Stresses and Deflections in Service 4.5.1 Properties of cross-sections subjected to negative moments 4.5.2 Example. Elastic properties of the cross-section 4.5.3 Longitudinal bending moments and stresses 4.5.4 Example. Stresses due to serviceability loads 4.5.5 Deflections of continuous beams 4.5.6 Example. Deflections 	122
4.6	 Crack-width Control in Continuous Beams 4.6.1 Example. Crack-width control 4.6.2 Crack-width control in positive-moment regions 4.6.3 Example. Crack-width control at midspan 	134
4.7	Slender Beams at the Ultimate Limit State	143
Chapte	er 5. Composite Columns and Frames	
5.1	Introduction	145

5.2	Cased-strut Design to BS 449: Part 2	146
	5.2.1 Example. Design by the cased-strut method	

5.3	Jltimate-strength Sommerville	Design	Method	of	Basu	and
	 3.1 Properties of th 3.2 Biaxial bending 3.3 Long-term load 3.4 Simplification o 3.5 Eccentricity of I 3.6 Example. Desig 3.7 Comparison bet 	ing f the Basu ar oading in 'Si n by Ultimat	nd Sommer imple' desig te-strength	ville n n methc	nethod ods	e
5.4	Concrete-filled Ste .4.1 Strength of fille .4.2 Example. Use of	d tubes	for external	colur	nn	
5.5	Beam–column Joi Frames 5.5.1 Example. Fixin		U U		f Comp	osite
5.6	Design of Rigid-jc 6.6.1 Braced frames 6.2 Beam-column i 6.3 Critical bucklin 6.4 Interim design 6.5 Example. Design	nteraction og and effecti method	nposite Fr	ame		
Append	x A. Partial-inte	raction Th	eory			
A.1	Theory for Simply	y Supporte	ed Beam			
A.2	Example. Partial	Interaction	ı			
Append	x B. The Effect of Load of a F			the	Collapse	e
Refere	ces					

1

251

• .

· · ·,

- -

ni Jr Dr Dr DC ĐS

ne S

hi ne or

p| n e

.