Angel Pasqual del Pobil Miguel Angel Serna

Spatial Representation and Motion Planning

in de
Technische Hochschule Darmstadt FACHBEREICH INFORMATIK
BIBLIOTHEK Inventar-Nr.: 1795-01417
in inchioto
Standort: 1996

Springer

Contents

1. Introduction	1
1.1 Motivation and Statement of the Problem	1
1.2 Review of Previous Work	7
1.2.1 Spatial Representations	8
1.2.2 Collision Detection and Motion Planning	9
2. The Spatial Representation	15
2.1 Exterior Representation	17
2.1.1 Planar Case	17
2.1.2 Extension to Three Dimensions	24
2.1.3 Quality of a Representation	30
2.1.4 The Expert Spherizer	41
2.2 Interior Representation	55
2.2.1 Planar Case	56
2.2.2 Extension to Three-Dimensional Space	70
2.2.3 How to Improve a Representation	75
2.3 Convergence and Hierarchy	79
2.3.1 Convergence of the Exterior Representation	8 0
2.3.2 Convergence of the Interior Representation	8 5
3. Collision Detection	87
3.1 Problem Definition	88
3.1.1 Problem Classification	88
3.1.2 Solution Methods	92
3.2 Intersection Detection	100
3.2.1 Intersection Between Spheres	101
3.2.2 Algorithm for Exterior Spheres	112
3.2.3 Algorithm for Interior Spheres	117
3.2.4 General Algorithm	119
3.3 Moving Objects	123
3.4 Application to a Manipulator	124

4. Motion Planning	131
4.1 Statement of the Problem	.132
4.1.1 Preliminary Concepts and Terminology	132
4.1.2 Taxonomy of the General Problem	136
4.2 Motion Planning and Collision Detection	140
4.3 Computing a Path in a CS Plane	147
4.4 Description of the General Method	154
4.5 Efficiency Considerations	160
- 4.6 Adaptive Motion	162
4.7 Application Examples	162
5. Extensions to the Model	173
5.1 Planar Figures with Curved Boundaries	175
5.1.1 Definition of the Extension	175
5.1.2 Computing the Approximation Polygon	176
5.1.3 Examples	179
5.2 Non-Convex Generalized Polygons	180
5.2.1 Types of Non-Convex Polygons	180
5.2.2 The Efficient Edge Heuristics Revisited	183
5.2.3 Isolated Non-Convex Angles	186
5.2.4 General Case	191
5.2.5 Computing Error Areas	193
5.2.6 Examples	204
5.3 Application-Dependent Local Quality Improvement	206
6. Conclusion and Future Work	211
6.1 Conclusion	211
6.2 Future Research and Open Problems	214
6.3 A Concluding Reflection	215
Appendix. Data Structures for Non-Convex	
Polygons	217
References	225

2