Time Series Analysis

Nonstationary and Noninvertible Distribution Theory

KATSUTO TANAKA

Hitotsubashi University

A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York • Chichester • Brisbane • Toronto • Singapore

Contents

Preface

1	Moti	vating Examples	1
	1.1	The Test Statistic for the Parameter Constancy, 1	
	1.2	The Test Statistic for a Moving Average Unit Root, 5	
	1.3	Statistics from the One-Dimensional Random Walk, 10	
	1.4	Statistics from the Two-Dimensional Random Walk, 19	
	1.5	Statistics from the Cointegrated Process, 28	
2	Stoc	hastic Calculus in Mean Square	35
	2.1	The Space L_2 of Random Variables, 35	
	2.2	The Standard Brownian Motion and the Brownian Bridge, 39	
	2.3	Mean Square Integration, 41	
	2.4	The Integrated Brownian Motion, 48	
	2.5	The Mean Square Ito Integral: The Scalar Case, 53	
	2.6	The Mean Square Ito Integral: The Vector Case, 55	
	2.7	The Ito Calculus, 57	
3	Func	ctional Central Limit Theorems	65
	3.1	Function Space C , 65	
	3.2	Weak Convergence of Stochastic Processes in C , 66	
	3.3	The Functional Central Limit Theorem, 68	
	3.4	Continuous Mappings and Related Theorems, 70	
	3.5	FCLT for Linear Processes: Case 1, 77	
	3.6	FCLT for Martingale Differences, 79	
	3.7	FCLT for Linear Processes: Case 2, 83	
	3.8	Weak Convergence to the Integrated Brownian Motion, 86	
	3.9	Weak Convergence to the Ornstein–Uhlenbeck Process, 90	
	3.10	Weak Convergence of Vector-Valued Stochastic Processes, 95	
	3.11	Weak Convergence to the Ito Integral, 102	

ix

CONTENTS

4	The	Stochastic Process Approach	109
	4.1	Girsanov's Theorem: Case 1, 109	
	4.2	Girsanov's Theorem: Case 2, 117	
	4.3	Girsanov's Theorem: Case 3, 121	
	4.4	The CameronMartin Formula, 124	
	4.5	Advantages and Disadvantages of the Present Approach, 125	
5	The Fredholm Approach		
	5.1	Motivating Examples, 129	
	5.2	The Fredholm Theory: The Homogeneous Case, 132	
	5.3	The c.f. of the Quadratic Brownian Functional, 136	
	5.4	Various Fredholm Determinants, 144	
	5.5 5.6	The Fredholm Theory: The Nonhomogeneous Case, 157 Weak Convergence of Quadratic Forms, 170	
6	Nun	nerical Integration	181
	6.1	Introduction, 181	
	6.2	Numerical Integration: The Nonnegative Case, 182	
	6.3	Numerical Integration: The Oscillating Case, 186	
	6.4	Numerical Integration: The General Case, 196	
	6.5	Computation of Percent Points, 203	
	6.6	The Saddlepoint Approximation, 207	
7	Esti	mation Problems in Nonstationary Autoregressive Models	213
	7,1	Nonstationary Autoregressive Models, 213	
	7.2	Convergence in Distribution of LSEs, 218	
	7.3	The Negative Unit Root Case, 230	
	7.4	The c.f.s for the Limiting Distributions of LSEs, 232	
	7.5	Tables and Figures of Limiting Distributions, 239	
	7.6	Approximations to the Distributions of the LSEs, 249	
	7.7	Nearly Nonstationary Seasonal AR Models, 253	
	7.8	Complex Roots on the Unit Circle, 264	
	7.9	Autoregressive Models with Multiple Unit Roots, 267	
8	Estimation Problems in Noninvertible Moving Average Models		279
	8.1	Noninvertible Moving Average Models, 279	
	8.2	The Local MLE in the Stationary Case, 282	
	8.3	The Local MLE in the Conditional Case, 294	
	8.4	Noninvertible Seasonal Models, 300	
	8.5	The Pseudolocal MLE, 307	
	8.6	Probability of the Local MLE at Unity, 311	
	8.7	The Relationship with the State Space Model, 314	

9	Unit Root Tests in Autoregressive Models	321	
	9.1 Introduction, 321		
	9.2 Optimal Tests, 323		
	9.3 Equivalence of the LM Test with the LBI or LBIU Test, 328		
	9.4 Various Unit Root Tests, 333		
	9.5 Integral Expressions for the Limiting Powers, 335		
	9.6 Limiting Power Envelopes and Point Optimal Tests, 342		
	9.7 Computation of the Limiting Powers, 346		
	9.8 Seasonal Unit Root Tests, 355		
	9.9 Unit Root Tests in the Dependent Case, 362		
	9.10 The Unit Root Testing Problem Revisited, 367		
10	Unit Root Tests in Moving Average Models	373	
	10.1 Introduction, 373		
	10.2 The LBI and LBIU Tests, 374		
	10.3 The Relationship with the Test Statistics in Differenced Form, 383		
	10.4 Performance of the LBI and LBIU Tests, 385		
	10.5 Seasonal Unit Root Tests, 392		
	10.6 Unit Root Tests in the Dependent Case, 402		
	10.7 The Relationship with Testing in the State Space Model, 405		
11	Statistical Analysis of Cointegration	417	
	11.1 Introduction, 417		
	11.2 Case of No Cointegration, 419		
	11.3 Cointegration Distributions: The Independent Case, 424		
	11.4 Cointegration Distributions: The Dependent Case, 433		
	11.5 The Sampling Behavior of Cointegration Distributions, 438		
	11.6 Testing for Cointegration, 445		
	11.7 Determination of the Cointegration Rank, 453		
	11.8 Higher Order Cointegration, 458		
12	Solutions to Problems	469	
Re	References		
Au	thor Index	617	
Su	Subject Index		
Lis	List of Series Titles		