Chemistry for the **Biosciences**

The essential concepts

SECOND EDITION

Jonathan Crowe

Tony Bradshaw Oxford Brookes University, Oxford, UK

Periodic table of the elements		i
Acknov	vledgements	xix
Welcon	Welcome to the book	
1 In	troduction: why biologists need chemistry	1
1.1	Science: revealing our world	2
	I'm a biologist: what has chemistry to do with me?	3
1.2	The essential concepts	4
1.3	The language of chemistry	7
	Units: making sense of numbers	8
	Symbols	9
2 A	toms: the foundations of life	10
2.1	The chemical elements	10
2.2	Atomic composition	12
	Protons, electrons, and electrical charge	13
	Identifying the composition of an atom: atomic number and mass number	14
	The formation of ions	15
	Isotopes: varying the number of neutrons	17
	Relative abundances and atomic weight	18
	Protons and chemical identity	21
2.3	Atomic structure	22
	Atomic orbitals	22
2.4	The energy of atoms	24
	Orbitals and energy levels	24
	Filling up orbitals-the building-up principle	25
	The filling of subshells	27
	Moving between orbitals: electron excitation	29
	Energy levels and quantization	32
2.5		33
	Valence electrons and the underlying logic of the periodic table	35
	The variety of life: not so varied after all?	36

.

Cor	npounds and chemical bonding: bringing atoms together	3
3.1	The formation of compounds	3
	The chemical bond: bridging the gap between atoms	3
	Which electron configuration is most stable?	3
3.2	Valence shells and Lewis dot symbols	4
	Non-bonding pairs of electrons	4
3.3	Bond formation: redistributing valence electrons	4
3.4	The ionic bond: transferring electrons	4
	Ionic bonding and full shells: how many electrons are transferred?	4
3.5	The chemical formula	5
3.6	The covalent bond: sharing electrons	5
	Covalent compounds and electrical charge	5
	The molecular formula: identifying the components of a covalent compound	5
	Covalent bonding and the distribution of electrons	5
	Molecular orbitals	5
3.7	The formation of multiple bonds	5
	Sigma and pi orbitals	5
	Valency: how many bonds can an atom form?	5
	Sharing one pair of electrons: the single bond	5
	Sharing two pairs of electrons: the double bond	5
	Sharing three pairs of electrons: the triple bond	6
	Satisfying valency with multiple bonds	6
	Hypervalency: going beyond the octet rule	6
3.8	Dative bonding: covalent bonding with a twist	6
	Dative bonds in biological systems	6
3.9	Aromatic compounds and conjugated bonds	6
3.10	Polyatomic compounds	6
3.11	Ionic versus covalent bonding	7.
	Electronegativity: how easily can electrons be transferred?	7
	Ionic and covalent bonding in nature: which is most prevalent?	7
3.12	Blurring the boundaries: polarized bonds	7
	How strongly is a bond polarized?	7
	Non-polar covalent bonds	7
Мо	lecular interactions: holding it all together	8
4.1	Chemical bonding versus non-covalent forces	8
	Intramolecular versus intermolecular forces	8
	The significance of molecular interactions	8

x

ntor

		Content
4.2	Electrostatic forces: the foundations of molecular interactions	85
	Polar bonds in non-polar molecules	89
4.3	The van der Waals interaction	90
	Dispersion forces	90
	Permanent dipolar interactions	94
	Steric repulsion	95
	Balancing attraction and repulsion: the van der Waals interaction	95
4.4	Beyond van der Waals: other biologically essential interactions	97
	Hydrogen bonds	97
	lonic forces	_~ 103
	Hydrophobic forces	106
	Holding it together: non-covalent interactions in biological molecules	110
4.5	Breaking molecular interactions: the three states of matter	112
	Changing states	114
	The transition between states	115
	The impact of non-covalent interactions on melting and boiling points	116
	ganic compounds 1: the framework of life	120

5.1	Organic chemistry	120
	Carbon: its defining features	121
	The key components of organic compounds	122
5.2	The framework of organic compounds	124
	Representing chemical structures: the structural formula	125
	The alkanes: the backbone of organic chemistry	127
	The shape of organic compounds	130
	Physical properties of the alkanes	132
	Chemical properties of the alkanes	134
5.3	Functional groups within the carbon framework	135
	The double bond	136
	The alkenes: hydrocarbons with a double carbon–carbon bond	137
	The alkynes: hydrocarbons with a triple carbon–carbon bond	140
5.4	Adding functional groups to the carbon framework	140
	Alkyl groups	141
	The aryl group: a special hydrocarbon group	144
	Functional groups and the properties of organic compounds	145
	Effect 1: We see an increase in melting and boiling points	145
	Effect 2: We see an increased solubility in polar solvents, like water	146
	Functional groups versus the carbon framework: a balancing act	147
6 OI	rganic compounds 2: adding function to the framework of life	151
6.1	Organic compounds with oxygen-based functional groups	151
	The alcohols: the hydroxyl group	151
	The ethers: the alkoxy group	154

	The aldehydes and ketones: the carbonyl group	157
	The carboxylic acids: combining the hydroxyl and carbonyl groups	163
	The esters: a modified carboxyl group	166
6.2	Organic compounds with nitrogen-based functional groups	170
	The amines: the amino group	170
	The amides: the amide group	176
6.3	Other functional groups	179
	The thiols and the sulfur-based functional group	້ 179
	The haloalkanes and the halogen-based functional group	179
	8SF	

7 Bi	ological macromolecules: providing life's infrastructure	185
7.1	Amino acids and proteins	185
	The composition of amino acids	185
	Formation of polypeptides	187
7.2	Carbohydrates	191
	The composition of monosaccharides	192
7.3	Lipids	195
	Steroids	195
	Triacylglycerols	197
	Glycerophospholipids	200
7.4	Nucleic acids	203
	Nucleotides and their composition	204
	Formation of nucleic acids	206
	The shape of nucleic acids	207
	Nucleotides: nature's energy stores	208
7.5	Metals in biology	210
	Metals and molecular structure: the zinc finger motif	211
	Metals and biological function: metalloproteins	213

8	Mo	lecular shape and structure 1: from atoms to small molecules	218
	8.1	The link between structure and function	218
	8.2	The shape of small molecules	219
		Bond lengths	219
	8.3	Bond angles	223
		Valence Shell Electron Pair Repulsion (VSEPR)	223
		VSEPR theory and the shape of molecules with multiple bonds	227

xii

247

8.4	Hybridization and shape	230
	Hybridizing different numbers of orbitals	231
8.5	Bond rotation and conformation	238
	Conformation versus configuration	240
	Limitations on bond rotation	242

9 Molecular shape and structure 2: the shape of large molecules

9.1	Constructing larger molecules		247
	The geometry of joined atoms	2	248
	The sequence of monomers within a polymer		248
	Bonding between monomers		250
9.2	The shape of larger molecules		253
	Primary structure		. 254
	Secondary structure		254
	Tertiary structure		261
	Quaternary structure		263
	The hierarchy of biological structure: a summary		266
9.3	Maintaining shape, and allowing flexibility		267
	The importance of structural flexibility: muscle contraction		270
	The importance of structural flexibility: enzymes		270

10	lsoi	nerism: generating chemical variety	278
	10.1	Isomers	278
	10.2	Structural isomers	279
		Distinguishing structural isomers	280
		Structural isomerism and the shape of the carbon framework	282
		Structural isomerism and the positioning of functional groups	283
		Structural isomerism: unifying chemical families	288
	10.3	Stereoisomers	290
-		Geometric isomers	290
		Enantiomers	298
	10.4	Chirality	300
		How do we distinguish one enantiomer from its mirror image?	304
		Chirality in biological systems	308
	10.5	The chemistry of isomers	311
		The biological chemistry of enantiomers	313
		The impact of chirality on medicinal chemistry	315

xiv

11 Chemical analysis 1: how do we know what is there?319		
11.1	What is chemical analysis?	319
11.2	How do we separate out what is there? Solvent extraction Chromatography Electrophoresis ~ Centrifugation	320 321 325 330 335
11.3	Measuring mass: mass spectrometry How does mass spectrometry work? How does mass spectrometry separate chemical species on the basis of mass? The mass spectrum: the outcome of mass spectrometry Coupling separation to identification	337 338 339 341 346
11.4	Building up the picture: spectroscopic techniques Spectroscopy and electromagnetic radiation What are we measuring during spectroscopy? Using spectroscopy to characterize chemical compounds	347 348 350 353
11.5	Characterizing the carbon framework: nuclear magnetic resonance spectroscopy	353
11.6	Identifying functional groups (1): infrared spectroscopy	360
11.7	Identifying functional groups (2): UV-visible spectroscopy The UV-visible spectrum	365 366
11.8	Establishing 3D structure: X-ray crystallography The crystal problem–keeping things real	368 369
12 Che	emical analysis 2: how do we know how much is there?	373
12.1	The mole Connecting molar quantities to mass	373 374
12.2	Concentrations Calculating the number of moles of substance in a sample of solution Preparing a solution of known concentration Calculating the concentration of a solution	378 379 380 383
12.3	Changing the concentration: solutions and dilutions The principles of diluting a solution Serial dilutions	384 384 388
12.4	Measuring concentrations UV-visible spectrophotometry Atomic spectroscopy Fluorescence spectroscopy	392 393 397 399

xv

12.5 Using chemical reactions to measure concentration	400
Titrations	402
Electrochemical sensors	405

-

5

13 Ene	ergy: what makes reactions go?	410
13.1	What is energy?	410
	The conservation of energy	411
	Kinetic energy	412
	Potential energy	413
13.2	Energy transfer	419
	The transfer of energy as work	421
	The transfer of energy as heat	421
	Heat versus temperature	423
13.3	Enthalpy	424
	Energy transfer during chemical reactions	425
	How can we determine the enthalpy change for a reaction?	428
	Depicting enthalpy changes: the energy diagram	430
	Enthalpy changes for different processes	433
	Enthalpy changes and the stability of chemical compounds	434
13.4	Entropy: the distribution of energy as the engine of change	435
	Entropy in chemical and biological systems	437
	The link between entropy and energy	439
	Spontaneous reactions and entropy	442
13.5	Spontaneous versus non-spontaneous processes: how much	
	energy do we need?	445
13.6	Gibbs free energy: the driving force of chemical reactions	448
	The Gibbs free energy of spontaneous reactions	451
	Gibbs free energy and cell metabolism	454
14 Kin	etics: what affects the speed of a reaction?	459
14.1	The rate of reaction	459
	What is the rate of a reaction?	461
	The dependence of reaction rate on concentration	464
14.2	The collision theory of reaction rates	471
	Increasing the concentration	472
	Increasing the temperature	472

14.3	The activation energy: getting reactions started	474
	Breaking the energy barrier: the transition state	475

14.4	Catalysis: lowering the activation energy	476
	The role of catalysts in chemical reactions	477
14.5	Enzymes: the biological catalysts	480
	The specificity of enzymes	481
	What happens during enzyme catalysis?	483
14.6	Enzyme kinetics	486
	Increasing substrate concentration: the limitation of the enzyme's active site	486
	Determining the values of $K_{\rm M}$ and $V_{\rm max}$	489
	Increasing temperature: the limitation of being a protein	494
5 Equ	ilibria: how far do reactions go?	498
15.1	Equilibrium reactions	498
	Equilibrium reactions and change	500
	Does it matter which reaction is 'forward' and which is 'back'?	504
15.2	Forward and back reactions: where is the balance struck?	505
	The equilibrium constant	507
	The magnitude of equilibrium constants	、 509
15.3	The reaction quotient	513
	Predicting the direction of a reaction	514
15.4	Binding reactions in biological systems	516
	What does the dissociation constant tell us?	518
15.5	Perturbing an equilibrium	521
	Changing the concentration of the system	522
	Changing the pressure or volume of the system	526
	Changing the temperature	528
	Catalysts and chemical equilibria	529
15.6	Free energy and chemical equilibria	530
	The van't Hoff isotherm and predicting spontaneity	532
	The van't Hoff isotherm and the position of equilibrium	533
6 Aci	ds, bases, and the aqueous environment: the medium of life	538
16.1	Acids and bases: making life happen	538
	Defining acids and bases	539
	Acids and bases in aqueous solution	540
	Pairing up acids and bases: the conjugate acid-base pair	541
16.2	The strength of acids and bases: to what extent does the dissociation	F 4 F
	reaction occur?	545
	Juggling protons: the tug-of-war between conjugate acid-base pairs The acid dissociation constant: to what extent does an acid dissociate?	547 548
	The base dissociation constant: to what extent does a base dissociate?	548
	pK_a and pK_b	545

xvi

		Content
16.3	Keeping things balanced: the ion product of water	555
	Making use of the ion product of water	556
>	Linking K_{w}, K_{a} , and K_{b}	557
16.4	Measuring concentrations: the pH scale	559
	The pH of strong and weak acids	560
	Linking weak acid strength and pH: using the Henderson-Hasselbalch equation	562
	pH and the ion product of water: balancing $[H^+]$ and $[OH^-]$	563
	Changing pH: neutralization reactions	563
	pOH: the basic equivalent of pH	565
16.5	The behaviour of acids and bases in biological systems	566
	The effect of acidity and basicity on partitioning between aqueous and hydrophobic systems	567
	The effect of pH on acidity and basicity	568
16.6	Buffer solutions: keeping pH the same	571
10.0	burlet solutions, keeping pit the sume	
	How does a buffer solution work?	571
		571 575
Che 7.1	How does a buffer solution work? The pH of buffer solutions Preparing buffer solutions to a desired pH mical reactions 1: bringing molecules to life What is a chemical reaction? The stoichiometry of chemical reactions	575 578 583 583 584
Che 17.1 17.2	How does a buffer solution work? The pH of buffer solutions Preparing buffer solutions to a desired pH mical reactions 1: bringing molecules to life What is a chemical reaction?	575 578 583 583
Che 17.1 17.2	How does a buffer solution work? The pH of buffer solutions Preparing buffer solutions to a desired pH mical reactions 1: bringing molecules to life What is a chemical reaction? The stoichiometry of chemical reactions The molecular basis of chemical reactions How do valence electrons move during chemical reactions?	575 578 583 583 584 586 586
Che 17.1 17.2 17.3	How does a buffer solution work? The pH of buffer solutions Preparing buffer solutions to a desired pH mical reactions 1: bringing molecules to life What is a chemical reaction? The stoichiometry of chemical reactions The molecular basis of chemical reactions How do valence electrons move during chemical reactions? Depicting the movement of electrons	575 578 583 583 584 586 586 586 587
Che 17.1 17.2 17.3	How does a buffer solution work? The pH of buffer solutions Preparing buffer solutions to a desired pH emical reactions 1: bringing molecules to life What is a chemical reaction? The stoichiometry of chemical reactions The molecular basis of chemical reactions How do valence electrons move during chemical reactions? Depicting the movement of electrons Heterolytic reactions	575 578 583 583 584 586 586 586 587 588
Che 17.1 17.2 17.3	How does a buffer solution work? The pH of buffer solutions Preparing buffer solutions to a desired pH emical reactions 1: bringing molecules to life What is a chemical reaction? The stoichiometry of chemical reactions The molecular basis of chemical reactions How do valence electrons move during chemical reactions? Depicting the movement of electrons Heterolytic reactions and the polarization of bonds	575 578 583 583 584 586 586 587 588 591
Che 17.1 17.2 17.3	How does a buffer solution work? The pH of buffer solutions Preparing buffer solutions to a desired pH mical reactions 1: bringing molecules to life What is a chemical reaction? The stoichiometry of chemical reactions The molecular basis of chemical reactions How do valence electrons move during chemical reactions? Depicting the movement of electrons Heterolytic reactions Heterolytic reactions and the polarization of bonds Oxidation and reduction	575 578 583 583 584 586 586 586 587 588 591 594
Che 17.1 17.2 17.3 17.4	How does a buffer solution work? The pH of buffer solutions Preparing buffer solutions to a desired pH mical reactions 1: bringing molecules to life What is a chemical reaction? The stoichiometry of chemical reactions The molecular basis of chemical reactions How do valence electrons move during chemical reactions? Depicting the movement of electrons Heterolytic reactions and the polarization of bonds Oxidation and reduction Oxidation and reduction in biological systems.	575 578 583 583 584 586 586 586 587 588 591 591 594 595
Che 17.1 17.2 17.3 17.4	How does a buffer solution work? The pH of buffer solutions Preparing buffer solutions to a desired pH Emical reactions 1: bringing molecules to life What is a chemical reaction? The stoichiometry of chemical reactions The molecular basis of chemical reactions How do valence electrons move during chemical reactions? Depicting the movement of electrons Heterolytic reactions Heterolytic reactions and the polarization of bonds Oxidation and reduction Oxidation and reduction in biological systems. Oxidation and reduction during enzyme catalysis	575 578 583 583 584 586 586 586 587 588 591 594 595 596
Che 17.1 17.2 17.3 17.4	How does a buffer solution work? The pH of buffer solutions Preparing buffer solutions to a desired pH emical reactions 1: bringing molecules to life What is a chemical reaction? The stoichiometry of chemical reactions The molecular basis of chemical reactions How do valence electrons move during chemical reactions? Depicting the movement of electrons Heterolytic reactions Heterolytic reactions and the polarization of bonds Oxidation and reduction Oxidation and reduction in biological systems. Oxidation and reduction during enzyme catalysis Homolytic reactions	575 578 583 583 584 586 586 586 587 588 591 594 595 596 599
Che 17.1 17.2 17.3 17.4	How does a buffer solution work? The pH of buffer solutions Preparing buffer solutions to a desired pH emical reactions 1: bringing molecules to life What is a chemical reaction? The stoichiometry of chemical reactions The molecular basis of chemical reactions How do valence electrons move during chemical reactions? Depicting the movement of electrons Heterolytic reactions Heterolytic reactions and the polarization of bonds Oxidation and reduction Oxidation and reduction in biological systems. Oxidation and reduction during enzyme catalysis Homolytic reactions Homolytic versus heterolytic cleavage	575 578 583 583 584 586 586 586 587 588 591 594 595 596 599 600
Che 17.1 17.2 17.3 17.4	How does a buffer solution work? The pH of buffer solutions Preparing buffer solutions to a desired pH mical reactions 1: bringing molecules to life What is a chemical reaction? The stoichiometry of chemical reactions The molecular basis of chemical reactions How do valence electrons move during chemical reactions? Depicting the movement of electrons Heterolytic reactions Heterolytic reactions and the polarization of bonds Oxidation and reduction Oxidation and reduction in biological systems. Oxidation and reduction during enzyme catalysis Homolytic reactions Homolytic versus heterolytic cleavage Initiation	575 578 583 583 584 586 586 586 587 588 591 594 595 596 599 600 601

 $\widehat{}$

- --

•

18.1 An introduction to reaction mechanisms	609
Transition states and intermediates	610

)

xviii

18.2 Substitution	X	613	
Nucleophilic substitution	}	613	
Electrophilic substitution		616	
18.3 Addition		620	
Addition across a carbonyl double bond		622	
18.4 Elimination		626	
One-step versus two-step elimination		628	
Elimination versus substitution)	628	
18.5 Condensation		631	
Hydrolysis: reversing condensation		634	
18.6 Biochemical reactions: from food to energy		639	
The reaction mechanisms underpinning glycolysis		640	
Beyond glycolysis: how the oxidation of glucose ultimately powers the cell		649	
Epilogue		657	
Bibliography		658	
Answers to self-check questions			
Index		665	