Contents

Preface v List of Contributors vii

1 Historical development and modern usage of steel 1 1

- 1.1 Introduction
- 1.2 High-rise buildings 3
- 1.3 Medium-rise buildings 9
- 1.4 Industrial buildings 12
- 1.5 The use of cold-formed sections 13
- 1.6 Long-span bridges and roofs 13
- 1.7 Concluding summary 15

2 Process of design 17

- 17 2.1 Design objectives
- 2.2 How does the designer approach a new problem? 18
- 2.3 How does the designer develop a structural system? 19
- 2.4 Differences of emphasis in design approach compared with that of a building 23
- 2.5 Concluding summary 23

Design philosophies 25

- 3.1 Introduction 25
- 3.2 Standardization of design procedures 26
- 3.3 Regulation of building and construction 27
- Concluding summary 3.4 30

Design of industrial buildings 31

- 4.1 Introduction 31
- 4.2 The function of industrial buildings 31
- 4.3 The anatomy of an industrial building 32
- 4.4 Alternatives for main frames 35

Design of bridges 39

- 5.1 Fundamentals 39
- 5.2 Loading 39
- 5.3 Simple single-span bridges 40

- x Contents
 - 5.4 Increasing spans 41
 - 5.5 Away from beams 42
 - 5.6 Other types 43

6 Design of multi-storey buildings 44

- 6.1 Building framework 44
- 6.2 Structural arrangement 47
- 6.3 Practical fabrication and construction 50

7 Learning from failures 51

- 7.1 Introduction 51
- 7.2 Contractual matters 52
- 7.3 King's Bridge, Melbourne 52
- 7.4 Cleddau Bridge, Milford Haven
- 7.5 Hyatt Regency Hotel, Kansas City 54
- 7.6 Concluding summary 56

8 Characteristics of iron-carbon alloys 57

- 8.1 Introduction to the structures of solid steels 57
- 8.2 The components of steel 58
- 8.3 Allotropy of iron 60
- 8.4 Slowly cooled steels 63
- 8.5 Rapidly cooled steels 69
- 8.6 Concluding summary 72

9 Engineering properties of metals 74

9.1 Structure-sensitive and structure-insensitive properties 74

53

- 9.2 The mechanical properties of metals 74
- 9.3 Fatigue properties 83
- 9.4 Physical properties 84
- 9.5 Corrosion resistance 85
- 9.6 Concluding summary 86

10 The manufacture and forming process 87

- 10.1 Ingot and continuous casting 87
 - 10.2 Hot-rolling processes 87
 - 10.3 Other forming processes 90
 - 10.4 Section types and size ranges 92
 - 10.5 Additional finishing processes and tolerances 93
 - 10.6 Steel qualities and material selection 93
 - 10.7 Concluding summary 94

11 Principles of welding 95

- 11.1 Types of joint 95
- 11.2 Method of making a welded joint 95
- 11.3 Structure and properties 96
- 11.4 Edge preparation for butt welds 98
- 11.5 Welding procedure 98
- 11.6 Shrinkage 101
- 11.7 Concluding summary 102

12 Welding processes 103

- 12.1 Manual metal-arc (MMA) welding 103
- 12.2 Metal-active gas (MAG) welding 103
- 12.3 Submerged-arc welding (SAW) 104
- 12.4 Stud welding 105
- 12.5 Choice of process 106
- 12.6 Concluding summary 107

13 Fabrication 108

- 13.1 Forms of contract and organization 108
- 13.2 Fabrication procedures 109
- 13.3 Concluding summary 112

14 Erection 113

- 14.1 Erection costs 113
- 14.2 The safety of the workforce 113
- 14.3 Design for erection 113
- 14.4 Practicalities of erection 115
- 14.5 Concluding summary 116

15 Corrosion protection 117

- 15.1 Basic theory of corrosion 117
- 15.2 Building interiors 118
- 15.3 Design 119
- 15.4 Paint coatings 119
- 15.5 Paint systems 121
- 15.6 Metal coatings 122
- 15.7 Concrete encasement 123
- 15.8 Weathering steel 123
- 15.9 Concluding summary 124

16 Fire protection 125

- 16.1 Regulation requirements 125
- 16.2 Fire resistance 125
- 16.3 Properties of steel 126
- 16.4 Protection of members 126
- 16.5 Tubular structures 129
- 16.6 Actual fires and fire engineering 130
- 16.7 Concluding summary 131

17 Tension members 132

- 17.1 Introduction 132
- 17.2 Types of tension members 132
- 17.3 End-connections and splices 133
- 17.4 Behaviour and analysis of tension members 134
- 17.5 Other considerations 139
- 17.6 Design of tension members to BS 5950: Part 1 140
- 17.7 Design of tension members to BS 5400: Part 3 142
- 17.8 Concluding summary 144

xii Contents

18 Introduction to buckling: 1 145

- 18.1 Introduction and basic definition of buckling 145
- 18.2 Elastic buckling of an ideal column or strut having pinned ends
- 18.3 Effect of material plasticity 149
- 18.4 Strength curve for an ideal strut 150
- 18.5 Strength of real compression members 151

18.6 Concluding summary 158

19 **Introduction to buckling: 2** 159

- 19.1 Buckling of plates in compression: local buckling 159
- 19.2 Buckling of web plates in shear 164
- 19.3 Torsional buckling of a column 165
- 19.4 Flexural-torsional buckling 167
- 19.5 Lateral-torsional buckling 168
- 19.6 Prevention of buckling failure 169
- 19.7 Concluding summary 170

20 **Restrained compact beams** 171

- 20.1 Introduction 171
- 20.2 Beam types 172
- 20.3 Design of beams for simple bending 172
- 20.4 Design of beams for shear 175
- 20.5 Deflections 176
- 20.6 Bending of unsymmetrical sections 176
- 20.7 Biaxial bending 177
- 20.8 Bending and torsion 178
- ·20.9 Concluding summary 178

21 Local buckling 179

- 21.1 Introduction 179
- 21.2 Slender and compact sections 179
- 21.3 Simplified approach to post-buckling behaviour and 'effective width' 181
- 21.4 Concluding summary 182

22 Columns 183

- 22.1 Introduction 183
- 22.2 Analysis 184
- 22.3 Column design curves 186
- 22.4 Types of sections used as columns 187
- 22.5 Effective lengths 188
- 22.6 Concluding summary 192

23 Unrestrained beams 194

23.1 Structural properties of sections used as beams 194

23.2 Response of slender beams to vertical loading 195

- 23.3 Factors influencing lateral stability 196
- 23.4 Lateral-torsional buckling 197
- 23.5 Design approach 201
- 23.6 Bracing 207
- 23.7 Concluding summary 208

24 Beam columns 210

- 24.1 Introduction 210
- 24.2 Beam column behaviour 211
- 24.3 Interaction between column and structure 216
- 24.4 Short-column strength 217
- 24.5 Moment magnification 219
- 24.6 Buckling 220
- 24.7 Buckling interaction curves 221
- 24.8 Choice of section 223
- 24.9 Design forces on the column 223
- 24.10 Strength assessment for design 224
- 24.11 Concluding summary 226

25 Plate girders 227

- 25.1 Structural action of plate girders 227
- 25.2 Outline of design procedure 227
- 25.3 Proportions of girder cross-section 228
- 25.4 Introduction to design 228
- 25.5 Webs with intermediate transverse stiffeners 229
- 25.6 Analysis of post-buckling tension field action 230
- 25.7 Code of practice for buildings: BS 5950 233
- 25.8 Code of practice for steel bridges: BS 5400 234
- 25.9 Design parameters 234
- 25.10 Further design considerations 234
- 25.11 Concluding summary 236

26 Cold-formed sections and sheeting 237

- 26.1 Cold-formed sections 237
- 26.2 Sheeting 241

27 Composite beams 247

- 27.1 Introduction 247
- 27.2 Advantages and disadvantages of composite construction for beams 248
- 27.3 Construction methods 249
- 27.4 Effective width 249
- 27.5 Shear connection: full and partial interaction 250
- 27.6 Failure modes for simply supported composite beams 250
- 27.7 Ultimate moment of resistance in positive bending 251
- 27.8 Elastic analysis 252
- 27.9 Calculations for deflections of composite beams 255
- 27.10 Plastic analysis of continuous composite beams 255
- 27.11 Shear connection 256
- 27.12 Concluding summary 261

28 Composite floors 262

- 28.1 Introduction 262
- 28.2 Behaviour of profiled sheeting as permanent formwork 262
- 28.3 Behaviour of composite slabs 264
- 28.4 Construction aspects 265
- 28.5 Interaction between composite floor and beam 265
- 28.6 Concluding summary 266

xiv Contents

29 Trusses and lattice girders 267

- 29.1 Types and uses 267
- 29.2 Loads on trusses and lattice girders in buildings 268
- 29.3 Analysis of trusses 269
- 29.4 Secondary considerations 270
- 29.5 Design of truss members 271
- 29.6 Concluding summary 274

30 Introduction to connection design 275

- 30.1 Introduction 275
- 30.2 The importance of connection design 277
- 30.3 An appropriate design approach for connections 279
- 30.4 Application of the design philosophy 283

30.5 Concluding summary 285

31 Welds: static strength 287

- 31.1 Introduction 287
- 31.2 Strength of butt welds 287
- 31.3 Strength of fillet welds 288
- 31.4 Concluding summary 293

32 Welds: fatigue strength 295

- 32.1 Introduction 295
- 32.2 Fatigue strength 295
- 32.3 Classification of details 297
- 32.4 Stress parameters for fatigue 298
- 32.5 Loadings for fatigue 299
- 32.6 Calculation of damage 300
- 32.7 Practical implications for design of welded structures 301

33 Bolts and bolting 302

- 33.1 Introduction 302
- 33.2 Ordinary bolts 303
- 33.3 High-strength friction-grip (HSFG) bolting 311
- 33.4 Fatigue 315
- 33.5 The use of HSFG bolts and pretensioned high-strength bolts 316
- 33.6 Specifications 316
- 33.7 Design to BS 5950 317
- 33.8 Design to BS 5400 320
- 33.9 Concluding summary 322

34 Local elements in connections 323

34.1 Introduction 323

34.2 Web yielding at points of concentrated load or reaction 324

34.3 Web buckling at points of concentrated load or reaction 326

- 34.4 Local bending of plates and flanges 326
- 34.5 Stanchion baseplates 328
- 34.6 Shear panels and shear reinforcement in connections 332
- 34.7 Concluding summary 332

35 Analysis of connections 334

- 35.1 Introduction 334
- 35.2 Simple analysis of bolted joints 334
- 35.3 Simple analysis of fillet-welded joints 341
- 35.4 Concluding summary 344

36 Multi-storey frame connections 345

- 36.1 Introduction 345
- 36.2 Beam-to-beam connections: flexible connections 345
- 36.3 Beam-to-column connections: erection-stiff connections 346
- 36.4 Beam-to-column connections: fully rigid connections 347
- 36.5 Column splices 348
- 36.6 Column bases 349
- 36.7 Concluding summary 350

37 Single-storey frame connections 352

- 37.1 Introduction 352
- 37.2 Unhaunched portal knees 352
- 37.3 Haunched portal knees 353
- 37.4 Portal apexes 354
- 37.5 Portal bases and column bases 355
- 37.6 Concluding summary 357
- 38 Truss and girder connections 358
 - 38.1 Introduction 358
 - 38.2 Types of connections 358
 - 38.3 Economic considerations 359
 - 38.4 Joint behaviour 359
 - 38.5 Joint design 361
 - 38.6 Concluding summary 362

Appendix: Worked examples 364

Index 393