

A Unifying Framework for Structured Analysis and Design Models: An Approach using Initial Algebra Semantics and Category Theory

T.H. Tse, M.B.E. *University of Hong Kong*

CAMBRIDGE UNIVERSITY PRESS

Cambridge

New York Port Chester Melbourne Sydney

CONTENTS

Preface	vii
List of Tables and Figures	ix
Chapter 1: Introduction	
Chapter 2: Desirable Features of Systems Development Environments	
2.1: Introduction	
2.2: Abstraction of the real world	
2.2.1 User familiarity of the specification language	7
2.2.2 Language style	
2.2.3 Multi-level abstraction	
2.2.4 Feedback to users	9
2.2.5 Modifiability	
2.3: Manipulation of representations	
2.3.1 Tools of manipulation	10
2.3.2 Transformation	11
2.3.3 Validation	11
2.3.4 Independence of design and implementation	13
2.4: Construction of a real system	13
2.4.1 Computability	
2.4.2 Verification of implementation	
2.5: Conclusion	16
Chapter 3. A Comparison with Related Work	
3.1: Introduction	19
3.2: PSL/PSA and META/GA	19
3.3: ADS/SODA	22
3.4: SADT/EDDA	23
3.5: SAMM/SIGS	26
3.6: RSL/SREM	28
3.7: Comparison and conclusion	31

Cha	opter 4. An Initial Algebra Framework for Unifying the Structured Mode	els
4.1:	Introduction	35
4.2:	Algebras	38
4.3:	Initial algebras	44
4.4:	Yourdon structure charts	49
4.5:	DeMarco data flow diagrams	54
4.6:	Jackson structure texts	62
4.7:	Conclusion	68
Cha	upter 5. A Functorial Framework for Unifying the Structured Models	
	Introduction	70
	A brief introduction to category theory	
	Category of De-Marco like processes	
	5.3.1 Objects	
	5.3.2 Morphisms	
5.4:	Category of De-Marco like tasks	
	Other categories of structured models	
	Functors and freeness	
	Conclusion	
Cho	apter 6. The Identification of Unstructuredness	
	Introduction	0/
	Connected tasks and skeletons	
	Minimal subtasks	
	Defining unstructuredness	
0.4.	6.4.1 An entry in the middle of a selection or parallel connection	
	6.4.2 An exit in the middle of a selection or parallel connection	
	6.4.3 An entry in the middle of an iteration	
	6.4.4 Non-unique exit in an iteration	
65.	Identification of multiple iteration exits	
	Partially overlapping skeletons	
	Conclusion	
0.7.	Conclusion	117
Cha	apter 7. A Prototype System to Implement the Unifying Framework	
	Introduction	
	Example on an application of the system	
7.3:	System characteristics	
	7.3.1 Choice of development language	
	7.3.2 Components of the prototype system	
	7.3.3 Examples of algorithms	147
Cha	pter 8. Conclusion	166
Ribl	liography	168