RADARGRAMMETRIC IMAGE PROCESSING

Franz W. Leberl

Artech House

Contents

Preface			xv
Chapter	1 In	ntroduction	1
•	1.1	What is Radargrammetry?	1
	1.2 /	A Historical Review	2
	1.3 \$	Status of Radargrammetry	11
	1.4 /	Accuracy of Radargrammetric Information	16
	1.5]	Fopics in Radargrammetry	17
Part I F	Radarg	grammetric Sensors and Image Model	23
Chapter	2 0	Creating a Side-Looking Radar Image	25
	2.1	Introduction	25
	2.2	Principle of Real Aperture or Brute Force Radar	27
	2.3	Ground Resolution	32
	2.4	Radar Echo	36
	2.5	A First Look at the Interpretation of an SLR Image	37
	2.6	A Geometric View of Synthetic Aperture	
		Side-Looking Radar	38
		2.6.1 The First Step: Generation of the Signal Film	40
		2.6.2 The Second Step: Transformation of the Signal	
		into a Map Image—SAR Image Correlation	43
		2.6.3 Synthetic Antenna and Resolution	46
	2.7	Other Viewpoints of SAR	50
	2.8	Digital SAR Phase History Processing	51
	2.9	Real-Time SAR Imaging	54
	2.10	Radargrammetrically Relevant Differences Between Real-	
		and Synthetic Aperture Radar	54
	2.11	SLR in a Satellite	55
	2.12	Squint Mode Imaging	57
	2.13	The Concept of Multiple Radar Looks and Speckle	60

	2.14 Diffuse and Specular Reflection	64		
	2.15 Imaging of Moving Objects	67		
	2.16 Radar Backscatter	71		
Chapter	3 Basics of Radargrammetry			
-	3.1 Basic Geometric Concepts			
	3.1.1 Definitions	78		
	3.1.2 Viewing Geometry	81		
	3.1.3 Image of a Distance	81		
	3.1.4 Image of a Vertical Structure—Relief			
	Displacement	84		
	3.1.5 Image of a Vertical Structure—Lay Over	86		
	3.1.6 Image of a Vertical Structure—Shadows	87		
	3.1.7 Image of a Slope	88		
	3.1.8 Squint	90		
	3.1.9 Tissot Analysis of the SLR Imaging Geometry	92		
	3.2 Illustrations of the Radar Viewing Geometry	94		
	3.3 Relationship Between Resolution and Scale	97		
	3.4 Defining Sensor Events Time t and Slant Range r			
	for Each Image Point	100		
	3.5 Projection Equation			
	3.6 The Squint Angle τ			
	3.7 Real Aperture Radar with Squint and Inclined Imaging Planes	.109		
	3.8 The Concept of Inner Orientation	110		
	3.9 Discussion	111		
Chapter	4 Modeling of Single Image Geometric Problems	113		
-	4.1 Introduction	113		
	4.2 Computation of Ground Coordinates from Given Image			
	Coordinates with Known Interior and Exterior Orientation	113		
	4.2.1 The Object is an Ellipsoid	114		
	4.2.2 The Object is a Sphere	114		
	4.2.3 The Object is a Horizontal Plane	119		
	4.2.4 Horizontal Flight and Object Plane	119		
	4.3 Computation of Ground Coordinates from Given Image			
	Coordinates When the Exterior Orientation is Not Known	119		
	4.3.1 Interpolative Methods	120		
	4.3.2 Parametric Models Using the Differential			
	Form of the Radar Equation	122		
	4.3.3 Hybrid Methods	127		
	4.4 Computation of Image Coordinates for Given Ground			
	Points and with Known Exterior Orientation			
	4.5 Accuracy Studies	130		
	4.5.1 Theoretical Prediction	130		

	6.3.2 A Modification of the Object Space Algorithm	. – .
	(Method II)	174
	6.3.3 Image Space Algorithm	176
	6.3.4 Ground Range Mapping	177
	6.5 Phase History Simulation	1//
	6.6 A Paview of Some Radar Simulation Systems	183
	6.6.1 Coherent System Simulation	183
	6.6.2 Noncoherent Image Simulator	185
	6.7 Radargrammetric Applications	186
	7 Common of Destan Income	100
Chapter	/ Sources of Radar Images	189
	7.1 Historical Imaging Radar Coverage	109
	7.2 Historical Extracticestrial Satellite Projects	190
	7.4 Current Aircraft Radar Manning Systems	195
	7.5 Future Satellite SAR Missions	199
	7.6 Outlook	199
Part II	A Radargrammetric Tool Kit	203
Chapter	8 Radar Image Rectification	205
Chapter	8.1 Introduction and Definitions	205
	8.2 Ortho-Image Generation	206
	8.3 Rectifying SLR Images Using an External DEM	209
	8.4 The Creation of Secondary Radar Image Products	214
	8.5 Image Mosaicking	217
	8.6 Semicontrolled Mosaics	218
	8.7 Radiometric Rectification	218
	8.7.1 The Concept	218
	8.7.2 An Example	219
	8.7.3 Comments	227
	8.8 Radar Image Monoplotting	227
	8.9 Graphical Rectification	228
	8.10 Accuracy of Rectification	230
Chapter	9 Radar Image Matching	235
-	9.1 Justification	235
	9.1.1 High Data Rates from Satellites	235
	9.1.2 Multiparameter Data Sets	236
	9.1.3 Difficulties in SAR Matching	236
	9.2 Some Classes of Matching Procedures	237
	9.3 From Registration to Matching	238
	9.4 Problems of Registering Dissimilar Radar Imagery	239
	9.4.1 Dissimilarities among Overlapping SLR Images	239

* * * *

	9.4.2 The Density of Correspondence Points	240
	9.4.3 Geocoding of Individual SLR Images	240
	9.4.4 Opposite-Side Image Pairs	240
	9.4.5 Other Sources of Dissimilarities	242
9.5	Correlation-Based Search for Match Points	243
	9.5.1 Area Correlation Methods	244
	9.5.2 Elementary Correlation	244
	9.5.3 Sequential or Hierarchical Variations	247
	9.5.4 Finding the Maximum Correlation Coefficient	247
	9.5.5 Edge-Based Methods	248
9.6	Analysis of Radiometric Effects on Correlation	249
9.7	An Alternative Edge Based Algorithm:	
	The Marr-Hildreth Based Binary Overlap Method	250
	9.7.1 Marr-Hildreth Threshold Images	251
	9.7.2 Matching of Marr-Hildreth Threshold Images	254
	9.7.3 The Binary Overlap Method and Its	
	Computational Complexity	254
9.8	Discussion of Results Obtained with the New Matching Method	259
9.9	Outlook	263
Chantan 10	Automated Matching of a Pader Image and Man Database	267
	The Broblem	267
10.1	Figures for Matching	260
10.2	10.2.1 Terrain Induced Shedows	209
	10.2.2 Terrain Induced Shadows	209
10.2	10.2.2 Terrain-induced Sildunig	270
10.3	Issues for the Selection of Control Information from	270
10.4	Databases	270
10.4	Overview of a System of Rules for SLR image Control	275
10.5	Image Processing to Extract Features	270
	10.5.1 Extraction of Shadows from Imagery	2/8
	10.5.2 Vectorizing Shadow Boundaries	281
10.6	Feature Matching	282
	10.6.1 Region Based Matching	282
	10.6.2 Boundary Based Matching	282
10.7	Using Shadows to Define Correspondence Points	284
	10.7.1 Defining Correspondence Points	284
	10.7.2 Correspondence Points and Imaging	
	Configuration	285
10.8	Using Feature Data to Define Correspondence Points	287
10.9	Correspondence Points to Define the Sensor Position and Rectify	у
	the Image	288
	10.9.1 Determining the Flying Height and	
	Cross-Track Coordinates	288

	10.9.2	An Alternative Method Using a Differential	
		Offset in Flying Height and Cross Track	291
	10.10 Results and	Discussion	293
	10.11 Analysis of	Robustness	298
Chapter	11 Merging Rad	ar and Nonradar Imagery	301
-	11.1 Introduction		301
	11.2 The Creation	of Registered Multisensor Data Sets	302
	11.2.1	General	302
	11.2.2	Manual Methods of Matching Multisensor	
		Images	303
	11.2.3	Automated Matching by Image Correlation	304
	11.2.4	Automated Matching Based on Objects	305
	11.2.5	Further Study	305
	11.3 Example of	a Multisensor Data Set	306
	11.3.1	Description of Experimental Data Sets	306
	11.3.2	Registration Methodology	306
	11.3.3 11.4 Canalusians	Observations	-311
-	11.4 Conclusions	and Recommendations	515
Chapter	12 Radar Stereo	scopy	317
	12.1 General		317
	12.2 Radar Stereo	scopic Exaggeration	319
	12.3 Radar Stered	Arrangements Viewshility with Derallel Flight Lines	322
	12.4 Kauai Stelet	Appearance of Stereo Padar Models	323
	12.5 The visual 7	ability Assessment by Image Simulation	334
	12.0 Steleo- views	oht Lines	336
	12.7.1	Definition	336
	12.7.2	Vertical Exaggeration	338
	12.7.3	Simulation Study of Stereo Viewability of	
		Images from Crossing Flight Lines	339
	12.7.4	Simulation Study of Stereo Viewability with	
		Squinted Mode Imaging	339
	12.8 Viewing of	Opposite-Side Stereo Radar Pairs	340
	12.8.1	The Problem	340
	12.8.2	Digital Preprocessing to Make Opposite-Side	
		SLR Stereo Pairs Viewable	342
	12.8.3	Conclusion	344
	12.9 Outlook		345
Chapter	13 Radar Stereo	Mapping	349
	13.1 Introduction		349
	13.1.1	The General or Rigorous Definition of a Radar	2.40
		Stereo Intersection	349

	13.2	Solution of th	e Rigorous Radar Stereo Intersection Problem	351
		13.2.1	Algorithm	351
		13.2.2	Comments	353
	13.3	Definition of	Parallaxes	354
	13.4	Parallax Diffe	erences Based on Projection Circles	355
	13.5	Approximate	Parallax Differences	359
	13.6	Error Propaga	ation—Definition of a Method	360
	13.7	Coordinate E	rrors	362
	13.8	Errors of Coo	ordinate Differences	368
		13.8.1	Stereo Base: dB	368
		13.8.2	Flight Altitude: dH	369
		13.8.3	Range Errors: dr' , dr'' , σ'_r , σ''_r	372
	13.9	Discussion of	f the Error Analysis	374
	13.10	Relative Orie	ntation—Formation of a Radar Stereo Model	376
	13.11	Generation of	f Terrain Contour Lines	377
	13.12	The Impossit	ility of Single Flight Stereo SAR Using	
		Nonzero Dop	pler Processing	378
	13.13	Real-Time C	onsideration for Radar Stereo Plotting	381
	13.14	Stereo Mappi	ing with Radar Images Obtained from	
		Crossing Flig	ht Lines	383
		13.14.1	Rigorous Intersection Geometry	383
		13.14.2	Parallax Geometry	383
	13.15	Use of Overl	apping Radar Images for Slope Mapping	389
	13.16	A Review of	Stereo Radar Accuracies	391
		13.16.1	Methods	391
		13.16.2	Accuracies Achieved Prior to SIR-B	392
		13.16.3	Mapping Lunar Features from Apollo-17	
			Imaging Radar	393
		13.16.4	Accuracies from SIR-B	398
		13.16.5	Other Results	400
		13.16.6	Accuracy and DEM	401
		13.16.7	Radar Stereo Accuracy from Crossing	
			Flight Lines	401
		13.16.8	Conclusions	404
Chapter	14 A	Automated Par	allax Detection	409
F	14.1	Introduction		409
	14.2	Difficulties for	r SAR Stereo Scenarios	409
	14.3	Approach to A	Automated Stereo Parallax Measurements	414
		14.3.1	Preprocessing	414
		14.3.2	Window Matching	415
		14.3.3	Matching with a Restricted Search Space	420
		14.3.4	Processing Height Models	420

xii		
	14.4 Recommenda	tions and Outlook
	14.4.1	Coping with Rad
	14.4.2	Using More than

		14.4.1	Coping with Radiometric Dissimilarities	421
		14.4.2	Using More than Two Images	421
		14.4.3	Semiautomated Instead of Automated	
			Parallax Detection	421
		14.4.4	Integrated Slope Reconstruction Tool Kit	422
Chapter	15	Radarclinomet	ry—Shape from Shading	425
•	15.1	Slope from In	nage Gray Values and Stereo Techniques	425
	15.2	A Review of	Radar Shape-from-Shading Technology	426
		15.2.1	Reflectance	426
		15.2.2	Single versus Multiple Images	428
		15.2.3	Constraints to Obtain a Solution	429
		15.2.4	Radarclinometry—Wildey's Approach	430
		15.2.5	Radar Shape-from-Shading—Frankot's Approach	431
	15.3	Analysis of F	rankot's Single Image Algorithm	431
	15.4	Generalized A	-Image Algorithm	435
		15.4.1	Overview	437
		15.4.2	Mathematical Formulation of Approach 1:	
			Generalizing the Cost Function	437
		15.4.3	Mathematical Formulation of Approach 2:	
			Combining Independent Surface Reconstructions	438
	15.5	Inclusion of A	A Priori Spot Elevations	440
	15.6	An Algorithm	to Estimate the So-Called Terrain Basis Functions	442
	15.7	Experimental	Verification	446
	15.8	Outlook		451
Chapter	16	Blocks of Rad	lar Images	455
	16.1	Introduction		455
	16.2	Methods		456
	16.3	Results and A	Accuracies	461
	16.4	Discussion		46 6
Chapter	17	SAR Interfero	metry	469
	17.1	Principles of	Operation	469
	17.2	Discussion of	the Basic SAR Interferometry Principle	
		with Two An	tennas	472
	17.3	Single-Antenn	a Satellite SAR Interferometry	473
		17.3.1	Complex Voltage	474
		17.3.2	The Method of Obtaining Null Lines	475
		17.3.3	Interferometry-Related Image Registration	476
		17.3.4	Phase Unwrapping	477
	17.4	Computation	of Height	480
	17.5	Accuracies		481

421

Part III	Арр	olications		485
Chapter	18	Earth Based P	lanetary Radar Imaging	487
•	18.1	Introduction		487
	18.2	Image Format	tion	488
		18.2.1	Range and Doppler Discrimination	488
		18.2.2	Resolving the North-South Ambiguity	489
		18.2.3	The Creation of an Altitude Map	492
		18.2.4	Discussion	492
	18.3	Radar Images	of Planet Venus	493
	18.4	Altimetry		494
	18.5	Conclusion		497
Chapter	19	Tracking of A	rctic Ice Floes in SAR Images	499
-	19.1	Background		499
	19.2	Automated Tr	racking of Sea Ice	505
	19.3	Extracting Fe	atures from SAR Images of Sea Ice	507
	19.4	Representing	Sea Ice Features with ψ -s Curves	508
	19.5	Matching of v	b-s Curves Using Correlation	513
	19.6	Verification of	of Correct Matches	515
	19.7	Problems with	h Matching ψ -s Curves Using Correlation	516
	19.8	Dynamic Pro	gramming	517
		19.8.1	A Dynamic Programming Solution to the	
			Matching of ψ -s Curves	517
		19.8.2	Problems with the Dynamic Time Warping	
			Approach	522
	19.9	Outlook		523
Chapter	20	Radar Image	Mapping at Scale 1:50,000	527
-	20.1	Introduction		527
	20.2	Applicability	y of SLR Imagery to Small- and Medium-	
		Scale Mapp	ing	528
		20.2.1	New Mapping Tools Needed	528
		20.2.2	Current Medium- and Small-Scale Mapping	528
		20.2.3	Cost	532
		20.2.4	Relating Conventional Standards	
			to Side-Looking Radar	533
	20.3	An Operation	onal SLR System for Mapping	534
	20.4	Viewing Ge	ometry Considerations	534
	20.5	Data Acquis	sition and Preprocessing	535
	20.6	Data Analys	sis	537
		20.6.1	Procedure	537
		20.6.2	Discussion	539

20.7	Results	540	
	20.7.1 Map Products	540	
	20.7.2 Accuracy	541	
20.8	GPS Based SAR Operation	546	
20.9	20.9 GPS Based DEMs		
20.1	0 Thematic Content of SLR Imagery for Mapping	550	
20.1	1 Conclusions	552	
Chapter 21	Outlook	555	
21.1	Current Status	555	
21.2	Progress with SAR Data	556	
21.3	Radargrammetric Progress	556	
21.4	Radar for Cartography	557	
21.5	Sensor-Independent Iconometry	557	
Appendix 1	ntroductory Exercises for Radargrammetric Analysis	559	
Bibliography		579	
Index		591	