Tadamasa Shida

The Chemical Bond

A Fundamental Quantum-Mechanical Picture

With 40 Figures

Contents

1	The 1.1	Elect The El	ron: A Primadonna in Chemical Bonding lectrostatic Potential Felt by the Electron	1
		is Refle	ected in the Color of Matter	2
	1.2	The E	lectron in a Square Well Potential	3
	1.3	The E	lectron Spin: As Important as the Energy	8
	1.4	A Brie	f History of the Quantum Mechanical Description	
		of the	Electron	12
		1.4.1	The Birth of the Bohr Theory	12
		1.4.2	The Birth of the Schrödinger Theory	14
2	Fun	damen	tals of Quantum Mechanics:	
	A P	rerequ	isite for Understanding the Chemical Bond	21
	2.1	Basic (Concepts, Postulates, Definitions and Methodology	21
		2.1.1	Wavefunction Determines the Probability	
			of Finding the Electron	21
		2.1.2	Energy Eigenstates are Stationary	22
		2.1.3	Any Physical Quantity has a Corresponding Operator	
			which has its own Set of Eigenfunctions	
			and Eigenvalues	24
		2.1.4	Operators of Any Physical Quantity are Linear:	
			Quantum Mechanical States are Superposable	24
		2.1.5	Eigenfunctions are Normalizable	25
		2.1.6	Superposition of Non-Degenerate States does not	
			Lead to an Eigenstate	25
		2.1.7	Superposition of Degenerate States does Lead	
			to an Eigenstate	26
		2.1.8	Definition of Hermitian Operators	26
		2.1.9	Eigenfunctions of Hermitian Operators are Orthogonal	28
		2.1.10	Eigenfunctions of Hermitian Operators are Complete .	29
		2.1.11	The Outcome of Observation:	
			Eigenvalues vs. Expectation Values	29
		2.1.12	The Product of Two Operators:	
			Commutators and Simultaneous Eigenfunctions	30
		2.1.13	Perturbation Method: Non-Degenerate Case	31
		2.1.14	Perturbation Method: Degenerate Case	34

ب

3

	2.1.15	Calculus of Variation	38
2.2	Applie	cation of the Concepts Presented in Sect. 2.1	
	to the	Problem of the Square Well Potential	41
	2.2.1	Normalization of Eigenfunctions	41
	2.2.2	Orthogonality of Eigenfunctions	41
	2.2.3	Superposition of State: Example 1	42
	2.2.4	Superposition of States: Example 2	43
	2.2.5	Expectation Value of the Energy	44
	2.2.6	Superposition of States: Example 3	44
	2.2.7	An Example of the Perturbation Method:	
		A Non-Degenerate Case	46
	2.2.8	An Example of the Calculus of Variation:	
		A Non-Degenerate Case	48
One	e-Elect	ron Atoms: The Fundamental System	51
3.1	The L	Derivation of Energy and Orbital Angular Momentum	
	of the	Electron in a Coulombic Potential: An Outline	52
3.2	The I	Derivation of the Eigenfunctions and Eigenvalues	
	of Ene	ergy and Orbital Angular Momentum	
	for a S	Single Electron in a Coulombic Potential	54
	3.2.1	A General Discussion of the Schrödinger Equation	54
	3.2.2	An Eigenvalue Equation to Describe	
		the Angular Component (A Digression):	
		Orbital Angular Momentum Operators	
		from the View Point of Classical Mechanics	56
	3.2.3	The Eigenvalue Equation to Describe	
		the Angular Component:	
		Eigenfunctions and Eigenvalues	57
	3.2.4	The Eigenvalue Equation to Describe	
		the Radial Component:	
		Eigenfunctions and Eigenvalues	59
	3.2.5	Total Spatial Eigenfunction of the One-Electron Atom	61
3.3	Some	Comments on the Solution for One-Electron Atoms	64
	3.3.1	Degeneracy of the Spatial Eigenfunctions is n^2 -Fold	
		without the Electron Spin Components,	
		and is $2n^2$ -Fold with the Electron Spin Included	64
	3.3.2	Representation of Real Forms	
		of Spherical Surface Harmonics	65
	3.3.3	A Relation between the Angular Dependence	
		of Spherical Harmonics	
		and the Orbital Angular Momentum	66
	3.3.4	The Radial Potential	68
3.4	Angul	ar Momentum in One-Electron Atoms	70
	3.4.1	The Definition of Orbital Angular Momentum	
		by the Commutative Relationship	70

		$3.4.2 \\ 3.4.3 \\ 3.4.4$	The Generalized Angular Momentum Eigenfunctions of the Electron Spin Electron Spin Operators	72 74 76
4	$\mathbf{M}\mathbf{u}$	lti-Ele	ctron Atoms: The Building Blocks that Produce	
	the	Treme	endous Variety of Molecules	79
	4.1	of Mu	lti-Electron Atoms: The Pauli Exclusion Principle	80
	4.2	The E	nergy of Multi-Electron Atoms:	
		A Qua	alitative Consideration and the Concept	
		of Ele	ctronic Shell Structure	84
	4.3	The A	ngular Momentum of Multi-Electron Atoms:	
		The .T	otal Angular Momentum as a Physical Quantity	
		to Cha	aracterize the State of Multi-Electron Atoms	89
		4.3.1	Spin-Orbit Interaction in One-Electron Atoms	90
		4.3.2	Couplings of Orbital Angular Momentum	
			and Spin in Multi-Electron Atoms:	02
		133	Coupled Angular Momentum	90
		4.0.0	of Multi-Electron Atoms (Case 1):	
			Concrete Examples of the Procedure of Coupling	95
		4.3.4	Coupled Angular Momentum	00
			of Multi-Electron Atoms (Case 2): Hund's Rules	98
		4.3.5	Electronic Configuration in Atoms and Valence States.	100
	4.4	An Ex	ample of the Solution of Multi-Electron Atoms	
		by the	Hartree-Fock Method: For the Case of Ne	103
5	Bor	n-Opp	enheimer Approximation:	
	Sep	aratio	n of Electronic Motion	
	from	n Nuc	lear Motion in Chemical Bonding	107
~	T I	TT 1		
0	The	e Hyar	ogen Molecular Ion:	
	for	i Simp Undor	estanding Chomical Bonds	112
	6 1		tability of the H^+ Ion (Explanation 1):	110
	0.1	Expla	nation by Invoking the Wave Packet of the Electron	114
		6.1.1	The Eigenfunction of the H_{+}^{+} Ion	***
		0.1.1	with the Proper Symmetry	115
		6.1.2	The Motion of the Wave Packet of the Electron in H_2^+	120
	6.2	The S	tability of the H_2^+ Ion (Explanation 2):	
		Qualit	ative Explanation in Terms	
		of the	Uncertainty Principle	123
	6.3	The S	tability of the H_2^+ Ion (Explanation 3):	
		An Ez	cplanation in Terms of the LCAO-MO Method	124

		6.3.1	Determination of the LCAO-MO of H_2^+
			by the Use of Symmetry 125
		6.3.2	Determination of the LCAO-MO of H_2^+
			by Ritz's Calculus of Variation 126
		6.3.3	Coulomb Integral and the Exchange Integral
			of the H_2^+ System
	6.4	A Few	Topics of Study in the H_2^+ System
7	The	Hydr	ogen Molecule:
	\mathbf{Wh}	y are [Fwo Neutral Hydrogen Atoms Stabilized
	by S	Simply	Approaching Each Other?
	7.1	It is S	pectroscopic Experiments on the H_2 Molecule that
		have F	Paved the Way to Quantum Chemical Theory 134
	7.2	The H	eitler-London Theory 136
		7.2.1	Eigenfunctions and Eigenvalues of Energy Ignoring
			the Effect of the Electron Spin 136
		7.2.2	Eigenfunctions and Eigenvalues Inclusive
			of the Electron Spin 140
	7.3	Develo	opment of the Heitler-London Theory 144
	7.4	Molec	ular Orbital Treatments of the Hydrogen Molecule 146
8	Poly	yatomi	c Molecules: Towards an Understanding
	of C	Chemic	al Bonds in Polyatomic Molecules
	8.1	The S	chrödinger Equation for Multi-Electron Systems
		and it	s Approximate Solution 150
		8.1.1	Outline of the Hartree-Fock Method to Include
			the Interelectronic Interaction 150
		8.1.2	A Practical Solution to the Problem
			of Interelectronic Interaction:
			The Hartree-Fock-Roothaan Method 158
	8.2	Exam	ples of SCF-MO Calculations and Comparisons
		with E	Experimental Results 161
		8.2.1	Computation for HF 162
		8.2.2	Some Comments on Point Groups 165
		8.2.3	Computed Orbital Energy as Compared
			with Experimental Observation 169
		8.2.4	The Relationship between Canonical Molecular
			Orbitals and Localized Orbitals 172
		8.2.5	A Critical Review of the Hybridized Orbital
			of Pauling 175
	8.3	Critic	al Comments on the Classification of Chemical Bonds 179
		8.3.1	Ionic Bond: NaCl, for Example 180
		8.3.2	Ionic Bond: Is the Bonding in HCl Covalent or Ionic? . 185
		8.3.3	Coordinate Bond

8.4	Some Topics and Prospects for the Study			
	of Chemical Bonding			
	8.4.1	Why does OF_6 not Exist,		
		while SF_6 is a Stable Molecule?:		
		The Discovery of CLi ₆ as a Relevant Topic 188		
	8.4.2	Molecules Comprising Rare Gas Atoms 190		
	8.4.3	An Example of a Recent Study		
		of the Hydrogen Bond 193		
	8.4.4	Interstellar Molecules 194		
Referen	ces			
Index				