
H2.1206 MM

MOLECULAR BIOLOGY OF THE CELL

Bruce Alberts • Dennis Bray Julian Lewis • Martin Raff • Keith Roberts James D. Watson

Nr. 15752

Garland Publishing, Inc. New York & London

Jeschenk von Prof. Kluge

List of Topics

Introduction to the	e C	PART	
CHAPTER The Evolution of the Cell From Molecules to the First Cell	<u>م</u>	From Single Cells to Multicellular Organisms Single Cells Can Associate to Form Colonies The Cells of a Higher Organism Become Specialized and Cooperate	28 - 28 - 29
Simple Biological Molecules Can Form Under Prebiotic Conditions Polynucleotides Are Capable of Directing Their Own	4	Multicellular Organization Depends on Cohesion Between Cells Epithelial Sheets of Cells Enclose a Sheltered Internal	29
Synthesis Self-replicating Molecules Undergo Natural Selection Information Flows from Polynucleotides to	4 6	Environment Cell-Cell Communication Controls the Spatial Pattern of Multicellular Organisms	30 31
Polypeptides Membranes Defined the First Cell Mycoplasmas Are the Simplest Living Cells	7 8 10	Cell Memory Permits the Development of Complex Patterns Basic Developmental Programs Tend to Be Conserved	31
Summary From Procaryotes to Eucaryotes	10 11 11	in Evolution Eucaryotic Organisms Possess a Complex Machinery for Reproduction	32 32
Procaryotic Cells Are Structurally Simple But Biochemically Diverse	11	The Cells of the Vertebrate Body Exhibit More Than 200 Different Modes of Specialization	33
Metabolic Reactions Evolve Cyanobacteria Can Fix CO ₂ and N ₂ Bacteria Can Carry Out the Aerobic Oxidation of Food	12 14	Cells of the Immune System Are Specialized for the Task of Chemical Recognition Nerve Cells Allow a Rapid Adaptation to a Changing	34
Molecules Eucaryotic Cells Contain Several Distinctive	15	World Developing Nerve Cells Must Assemble to Form a	35
Organelles Eucaryotic Cells Depend on Mitochondria for Their Oxidative Metabolism	15 19	Nervous System Nerve Cell Connections Determine Patterns of Behavior	36 37
Chloroplasts May Be Descendants of Procaryotic Algae Eucaryotic Cells Contain a Rich Array of Internal	19	Summary References	39 41
Membranes Eucaryotic Cells Have a Cytoskeleton	21 21	CHAPTER	ത
Protozoa Include the Most Complex Cells Known Genes Can Be Switched On and Off Eucaryotic Cells Have Vastly More DNA Than They	23 23	Small Molecules, Energy, and Biosynthesis	Z
Need for the Specification of Proteins In Eucaryotic Cells the Genetic Material Is Packaged in Complex Ways	26 26	The Chemical Components of a Cell Cell Chemistry Is Based on Carbon Compounds	44 44
Summary	27	Cells Use Four Basic Types of Small Molecules	45

List of Topics х

Sugars Are Food Molecules of the Cell

Fatty Acids Are Components of Cell Membranes

50

87

Protein Subunits and Nucleic Acids

Amino Acids Are the Subunits of Proteins

Nucleotides Are the Subunits of DNA and RNA Summary

Biological Order and Energy

Biological Order Is Made Possible by the Release of Heat Energy from Cells

Photosynthetic Organisms Use Sunlight to Synthesize **Organic Compounds**

Chemical Energy Passes from Plants to Animals

Cells Obtain Energy by the Oxidation of Biological Molecules

The Breakdown of Organic Molecules Takes Place in Sequences of Enzyme-catalyzed Reactions

Part of the Energy Released in Oxidation Reactions Is Coupled to the Formation of ATP

The Hydrolysis of ATP Generates Order in Cells Summary

Food and the Derivation of Cellular Energy

Food Molecules Are Broken Down in Three Stages to Give ATP

Glycolysis Can Produce ATP Even in the Absence of Oxygen

Oxidative Catabolism Yields a Much Greater Amount of Usable Energy

Metabolism Is Dominated by the Citric Acid Cycle

The Transfer of Electrons to Oxygen Drives ATP Formation

Amino Acids and Nucleotides Are Part of the Nitrogen Cycle

Summary

Biosynthesis and the Creation of Order

The Energy for Biosynthesis Comes from the Hydrolysis of ATP

Biosynthetic Reactions Are Often Directly Coupled to **ATP Hydrolysis**

Coenzymes Are Involved in the Transfer of Specific **Chemical Groups**

Biosynthesis Requires Reducing Power

Biological Polymers Are Synthesized by Repetition of **Elementary Dehydration Reactions**

Summary

The Coordination of Catabolism and **Biosynthesis**

Metabolism Is Organized and Regulated

Metabolic Pathways Are Regulated by Changes in **Enzyme Activity**

Catabolic Reactions Can Be Reversed by an Input of Energy

Enzymes Can Be Switched On and Off by Covalent Modification

and Within Organisms	8'
Summary	8
References	8
CHAPTER	ற
Macromolecules: Structure, Shape, and Information	J
Molecular Recognition Processes	9
The Information Carried by a Macromolecule Is Expressed by Means of Weak Noncovalent Bonds	9
Diffusion Is the First Step to Molecular Recognition	9
Thermal Motions Not Only Bring Molecules Together But Also Pull Them Apart	ę
Molecular Recognition Processes Can Never Be Perfect	ę
Summary	· g
Nucleic Acids	9
Genes Are Made of DNA	5
DNA Molecules Consist of Two Long Complementary Chains Held Together by Base Pairs	9
The Structure of DNA Provides an Explanation for Heredity	10
Errors in DNA Replication Cause Mutations	10
The Nucleotide Sequence of a Gene Determines the Amino Acid Sequence of a Protein	. 10
Portions of the DNA Sequence Are Copied into RNA	. 10
Sequences of Nucleotides in mRNA Are "Read" in Sets of Three	1(
tRNA Molecules Match Amino Acids to Groups of Nucleotides	10
The RNA Message Is Read from One End to the Other by a Ribosome	10
Summary	1
Protein Structure	
The Shape of a Protein Molecule Is Determined by Its Amino Acid Sequence	11
Common Folding Patterns Recur in Different Protein Chains	1
Proteins Are Enormously Versatile in Structure	1
Proteins Show Different Levels of Structural Organization	1
Relatively Few of the Many Possible Polypeptide	
Chains Would Be Useful New Proteins Often Evolve by Minor Alterations of Old	1
Ones	1
New Proteins Often Evolve Through the Combination of Different Polypeptide Domains	1
Protein Subunits Can Self-assemble into Large Structures in the Cell	. 1
A Single Type of Protein Subunit Can Interact with Itself to Form Geometrically Regular Aggregates	1
Self-assembling Aggregates Can Include Different	1

Reactions Are Compartmentalized Both Within Cells

	- C	mm +	
LIST	nt.	Topics	5 XI
	U 4	ropio	- AI

here Are Limits to Self-assembly	126 127	Image Reconstruction Techniques Based on Diffraction Can Be Used to Extract Additional	
ummary C		Information from Electron Micrographs	157
rotein Function	127	X-ray Diffraction Reveals the Three-dimensional	
Protein's Conformation Determines Its Chemistry	128	Arrangement of the Atoms in a Molecule	158
abstrate Binding Is the First Step in Enzyme atalysis	129	Summary	159
ing one accelerate Reaction Rates Without Shifting	1-0	Cell Culture	160
quilibria	131	Cells Can Be Grown in a Culture Dish	161
any Enzymes Make Reactions Proceed Preferentially One Direction by Coupling Them to ATP	199	Chemically Defined Media Permit Identification of Specific Growth Factors	162
fydrolysis Aultienzyme Complexes Help to Increase the Rate of	132	Eucaryotic Cell Lines Are a Convenient Source of Homogeneous Cells	162
iell Metabolism	132	Cells Can Be Fused Together to Form Hybrid Cells	163
tracellular Membranes Increase the Rates of	133	Summary	165
totein Molecules Can Reversibly Change Their Shape	134	The Fractionation of Cells	
llosteric Proteins Are Involved in Metabolic		and Their Contents	165
legulation	134	Cells Can Be Isolated from a Tissue and Separated	
llosteric Proteins Are Vital for Cell Signaling	135	into Different Types	166
toteins Can Be Pushed or Pulled into Different hapes	135	Organelles and Macromolecules Can Be Separated by Ultracentrifugation	166
nergy-driven Changes in Protein Conformations Can o Useful Work	137	The Molecular Details of Complex Cellular Processes Can Be Determined Only by Studies of Fractionated	e.
TP-driven Membrane-bound Allosteric Proteins Can	197	Cell Components	169
et as Pumps rotein Molecules Can Harness Ion Gradients to Do	137	Proteins Can Be Separated by Chromatography	170
seful Work	139 139	The Size and Subunit Composition of a Protein Can Be Determined by SDS Polyacrylamide-Gel Electrophoresis	173
eferences	139	More Than 1000 Proteins Can Be Resolved on a Single Gel by Two-dimensional Polyacrylamide-Gel Electrophoresis	175
CHĄPTER	7	Selective Cleavage of a Protein Generates a Distinctive Set of Peptide Fragments	177
low Cells Are Studied	<u></u>	Short Amino Acid Sequences Can Be Analyzed by Automated Machines	177
licroscopy	143	Summary	178
1e Light Microscope Can Resolve Details 0.2 μm	144	Tracing Cellular Molecules with Radioactive Isotopes and Antibodies	~_ 1 79
art fferent Components of the Cell Can Be Selectively	144	Radioactive Atoms Can Be Detected with Great	110
ained	145	Sensitivity	179
ssues Are Usually Fixed and Stained for Microscopy ing Cells Can Be Seen in a Phase-Contrast or	145	Radioisotopes Are Used to Trace Molecules in Cells and Organisms	179
fferential-Interference-Contrast Microscope te Electron Microscope Resolves the Fine Structure	146	Antibodies Can Be Used to Detect and Isolate Specific Molecules	
the Cell	148	Hybridoma Cell Lines Provide a Permanent Source of Monoclonal Antibodies	182
blogical Specimens Require Special Preparation for Electron Microscope	149	Antibodies and Other Macromolecules Can Be Injected into Living Cells	. 184
ree-dimensional Images Can Be Obtained by ectron Microscopy	151	Summary	. 184
eze-Fracture and Freeze-Etch Electron Microscopy wide Novel Views of the Cell	152	Recombinant DNA Technology	185
lividual Macromolecules Can Be Resolved in the ctron Microscope	154	Restriction Nucleases Hydrolyze DNA Molecules at Specific Nucleotide Sequences	185

Selected DNA Sequences Are Produced in Large

Copies of Specific mRNA Molecules Can Be Cloned

187

188

Amounts by Cloning

154

e Detailed Structure of Molecules in a Crystalline ay Can Be Calculated from the Diffraction Patterns ey Create

xii List of Topics

Cloned DNA Fragments Can Be Rapidly Sequenced Nucleic Acid Hybridization Reactions Provide a Sensitive Way of Detecting Specific Nucleotide Sequences

In Situ Hybridization Techniques Are Used to Localize Specific Nucleic Acid Sequences in Chromosomes and Cells

189	Recombinant DNA Techniques Allow Even the Mino	r
	Proteins of a Cell to Be Studied	191
	Mutant Genes Can Now Be Made to Order	192
189	Summary	194
	References	194
191		

PART

The Molecular Organization of Cells

CHAPTER

۰.

Basic	Genetic
Mecha	anisms

من		The Stability
Protein Synthesis	199	The Structur
The Decoding of DNA into Protein	199	Helix Make I
RNA Polymerase Copies DNA into RNA	200	Summary
Protein Synthesis Is Inherently Very Complex	202	DNA Repli
Specific Enzymes Couple Each Amino Acid to Its Appropriate tRNA Molecule	205	Base-pairing DNA Repair
Amino Acids Are Added to the Carboxyl-Terminal End of a Growing Polypeptide Chain	206	The DNA Rep The High Fid
Each Amino Acid Added Is Selected by a Complementary Base-pairing Interaction Between Its Linked tRNA Molecule and an mRNA Chain	207	"Proofreadin DNA Replica
The Events in Protein Synthesis Are Catalyzed on the Ribosome	208	Intrinsically A Special Nu to Synthesize
A Ribosome Moves Stepwise Along the mRNA Chain	210	Strand
A Protein Chain Is Released from the Ribosome Whenever One of Three Different Termination Codons Is Reached	211	Special Prote in Front of th Other Specia
The Initiation Process Sets the Reading Frame for Protein Synthesis	211	The Replicat
The Overall Rate of Protein Synthesis in Eucaryotes Is Controlled by Initiation Factors	212	Replication F Summary
Many Inhibitors of Procaryotic Protein Synthesis Are Useful as Antibiotics	212	Viruses
Summary	213	Viruses Are M
DNA Repair Mechanisms	214	The Genetic RNA
DNA Sequences Are Maintained with a Very High Fidelity	214	The Outer Co a Membrane
Directly Detected Spontaneous-Mutation Rates Are Consistent with Evolutionary Estimates	214	Viral Chromo Enzymes Inv
Most Mutations in Proteins Are Deleterious and Are Eliminated by Natural Selection	215	Nucleic Acid Viral Genome

7	Low Mutation Rates Mean That Related Organisms Must Be Made from Essentially the Same Proteins	216
)	If Left Uncorrected, Spontaneous DNA Damage Would Change DNA Sequences Rapidly	216
	The Stability of Genes Is Due to DNA Repair	217
9	The Structure and Chemistry of the DNA Double	
9	Helix Make It Easy to Repair	220
0	Summary	221
2	DNA Replication Mechanisms	221
	Base-pairing Underlies DNA Replication as well as	
5	DNA Repair	221
	The DNA Replication Fork Is Asymmetrical	223
6	The High Fidelity of DNA Replication Requires a "Proofreading" Mechanism	224
7	DNA Replication in the 5'-to-3' Direction Is Intrinsically More Accurate	226
	A Special Nucleotide Polymerizing Enzyme Is Needed	
8	to Synthesize Short Primer Molecules on the Lagging	
0	Strand	226
	Special Proteins Help Open Up the DNA Double Helix in Front of the Replication Fork	227
1	Other Special Proteins Prevent DNA Tangling	228
1	The Replication of DNA in Eucaryotes and Procaryotes Is Basically Similar	230
~	Replication Forks Are Created at Replication Origins	231
2	Summary	232
2	Viruses	232
3	Viruses Are Mobile Genes	232
4	The Genetic Component of a Virus Is Either DNA or RNA	233
4	The Outer Coat of a Virus May Be a Protein Capsid or a Membrane Envelope	233
4	Viral Chromosomes Usually Code for One or More Enzymes Involved in the Replication of the Viral	
	Nucleic Acid	235
5	Viral Genomes Come in a Variety of Forms	235

....

Viral Chromosomes	Can Integrate Themselves	into
Host Chromosomes		

RNA Viruses Also Replicate Through the Formation of **Complementary Chains**

Viral Genetic Elements Can Make Cells Cancerous

How Did Viruses Evolve?

Summary

Genetic Recombination Mechanisms

General Recombination Processes Are Guided by Base-pairing Interactions Between Complementary Strands of Homologous DNA Helices

General Recombination Is Initiated at a Nick in One Strand of a DNA Double Helix

Special Proteins Enable DNA Single Strands to Pair with a Homologous Region of DNA Double Helix

Genetic Recombination Usually Involves a **Cross-Strand Exchange**

General Recombination Aids DNA Repair Processes

Site-specific Recombination En	izymes Move Special	
Sequences of DNA in and out	of Genomes	247
Summary	· .	250

References

CHAPTER

The Plasma Membrane

The Lipid Bilayer

Membrane Lipids Are Amphipathic Molecules That Spontaneously Form Bilayers

The Lipid Bilayer Is a Two-dimensional Fluid

The Fluidity of a Lipid Bilayer Depends on Its Composition

The Lipid Bilayer Serves as a Solvent for Membrane Proteins

The Lipid Bilayer of the Plasma Membrane Is Asymmetrical

Glycolipids Are Found on the Surface of All Plasma Membranes, But Their Function Is Unknown

Summary

Membrane Proteins

Many Membrane Proteins Are Held in the Bilaver by Hydrophobic Interactions with Lipid Molecules

The Use of SDS Polyacrylamide-Gel Electrophoresis Has Revolutionized the Study of Membrane Proteins

The Cytoplasmic Side of Membrane Proteins Can Be Studied in Red Blood Cell Ghosts

Spectrin Is Loosely Associated with the Cytoplasmic Side of the Red Blood Cell Membrane

Glycophorin Extends Through the Red Cell Lipid Bilayer as a Single α -Helix

Band III of the Human Red Blood Cell Membrane Is a Transport Protein

Bacteriorhodopsin Is a Proton Pump That Traverses the Bilayer as Seven α-Helices

236	Membrane Transport Proteins Can Be Visualized by Freeze-Fracture Electron Microscopy	272
	Vectorial Labeling Reagents Can Be Used to Study	
236	Some Plasma Membrane Proteins of Nucleated Cells	274
238 239	When Two Cells Are Fused Together, Their Plasma Membrane Proteins Rapidly Mix	275
240	Membrane Proteins Cluster into Patches When They Are Cross-linked by Antibodies	276
240	Cross-linked Membrane Proteins Are Actively Swept to One Pole of the Cell in the Process of "Capping"	278
241	Conflicting Views on How Cells Cap: Flow Versus Pull Hypotheses	279
242	Antibody-induced Redistribution Can Be Used to Determine Whether Two Polypeptides Are Associated with Each Other in the Plasma Membrane	280
243	Lateral Diffusion Rates of Membrane Proteins Can Be Quantified	281
244 247	Cells Have Ways of Restricting the Lateral Mobility of Certain of Their Membrane Proteins	282
	Summary	283
247	Membrane Carbohydrate	283
250 250	The Carbohydrate in Biological Membranes Is Confined to the Noncytoplasmic Surface	284
•	Cell-Surface Carbohydrate Is Suspected to Be	
$\overline{\mathbb{O}}$	Important in Cell-Cell Interactions, But This Has Been Difficult to Demonstrate	285
hī.	Summary	286
U	Membrane Transport of Small Molecules	286
256	Protein-free Lipid Bilayers Are Impermeable to Ions But Freely Permeable to Water	287
256 258	Membrane-bound Transport Proteins Transfer Specific Small Molecules Across Cell Membranes	. 287
259	Transport Proteins Form a Continuous Protein Pathway Across the Lipid Bilayer	289
	Carrier Proteins Behave Like Membrane-bound Enzymes	289
260	The Membrane Potential That Exists Across the	
261	Plasma Membrane Is Maintained by a Na^+ - K^+ Pump	. 290
262	The Ubiquitous Plasma Membrane Na ⁺ -K ⁺ Pump Is an ATPase	291
263	The Na ⁺ -K ⁺ ATPase Helps Control Cell Volume by Controlling the Solute Concentration Inside Cells	294
264	Some Ca ²⁺ Pumps Are Also Membrane-bound ATPases	295
264	Membrane-bound Enzymes That Synthesize ATP Are Transport ATPases Working in Reverse	295
266	Active Transport Can Be Driven by Ion Gradients	295
266	Active Transport in Bacteria Can Occur by "Group Translocation" and Can Involve Water-soluble Binding Proteins	· 297
268	Some Transmembrane Protein Channels Are "Gated" and Open Only Transiently	298
268	Asymmetrically Distributed Ion Channels Can Generate Ion Currents That Polarize Cells	300
269	Ionophores Increase the Ion Permeability of Synthetic	
	and Biological Membranes	301 <i>301</i>
271	Summary	

xiv List of Topics

Membrane Transport of Macromolecules and Particles: Exocytosis and Endocytosis

Exocytosis Occurs by the Fusion of Intracellular Vesicles with the Plasma Membrane

Triggered Exocytosis Is a Localized Response of the Plasma Membrane and Its Underlying Cytoplasm

Membrane Fusion Involves Bilayer Adherence Followed by Bilayer Joining

Endocytosis Occurs Continually in Most Cells Most Endocytotic Vesicles Ultimately Fuse with

Lysosomes

Many Endocytotic Vesicles Are Coated

Coated Pits and Vesicles Provide a Specialized Pathway for Receptor-mediated Endocytosis of Specific Macromolecules

Many Cell-Surface Receptors Associate with Coated Pits Only After Ligand Binding

Some Macromolecules Can Penetrate Cell Membranes Directly

Specialized Phagocytic Cells Ingest Particles That Bind to Specific Receptors on Their Surface

Phagocytosis Is a Localized Response That Proceeds by a "Membrane-zippering" Mechanism

Membrane Vesicular Traffic: How Is It Powered, Guided, and Regulated?

Summary

References ?

CHAPTER

Internal Membranes and the Synthesis of Macromolecules

The Compartmentalization of Higher Cells

Large Eucaryotic Cells Need Internal Membranes

Internal Membranes Divide the Cell into Specialized Compartments

Even Complex Eucaryotic Cells Have Only a Few Major Intracellular Compartments

Intracellular Compartments Permit the Cell to Carry Out Many Incompatible Chemical Reactions Simultaneously

Viruses Reveal the Existence of Highly Organized Pathways Between Host Cell Compartments

Different Viruses Follow Different Pathways Through the Cell

Summary

The Cytosol

Most Intermediary Metabolism Takes Place in the Cytosol

Many Proteins Are Synthesized by Ribosomes in the Cytosol

	The Binding of Many Ribosomes to an Individual Messenger RNA Molecule Generates Polysomes	328
302	Protein Synthesis Is Blocked by Specific Inhibitors	330
303	Some Proteins Regulate the Rate of Their Own Synthesis by Binding to the Messenger RNA Molecules on Which They Are Made	330
304	In Eucaryotes Only One Species of Polypeptide Chain Can Be Synthesized on Each Messenger RNA	`
305	Molecule	331
306	Polyproteins Are Often Made in Eucaryotes	332
307	Many Proteins Undergo Covalent Modification After Their Synthesis	333
307	Some Proteins Are Degraded Soon After They Have Been Synthesized	334
309	Not All Proteins Synthesized in the Cytosol Remain There	335
311	Summary The Endoplasmic Reticulum	335 335
911	Attached Ribosomes Define, "Rough" Regions of ER	336
311	Smooth ER Is Abundant in Certain Specialized Cells	338
311	Rough and Smooth Regions of ER Can Be Physically, Separated	339
312	Rough Regions of ER Contain Specific Proteins Responsible for the Binding of Ribosomes	340
313	Membrane-bound Ribosomes Synthesize Proteins	
314	That Pass Through the Membrane During Their Translation	. ³⁴¹
314	Direct Evidence Favoring Vectorial Discharge Has Come from Experiments in Bacteria	342
	Membrane-bound Ribosomes Are Derived from Free Ribosomes That Are Directed to the ER Membrane by Special Signal Sequences	343
7	There Is Genetic Evidence for the Signal Hypothesis	344
//	Some Proteins Cross Membranes by a Posttranslational Import Mechanism Rather Than by Vectorial Discharge	344
320	Most Proteins Synthesized in the Rough ER Are Glycosylated	345
320	The Oligosaccharide Is Added to the Growing Polypeptide Chain on the Luminal Side of the ER	347
320	The Oligosaccharide Is Donated to the Polypeptide by an Activated Lipid and Then Almost Immediately	
320	Modified	347
	Lipids Are Synthesized in the ER Membrane	350
323	Lipid Biosynthesis Is Asymmetric Special Proteins Transfer Phospholipids from the ER	351
	to Mitochondria	351
323	The Luminal Side of an Internal Organelle Is Topologically Equivalent to the Outside of the Cell	352
325 326	Membrane Growth by Continuous Expansion of the ER Ensures the Propagation of Transmembrane	
326	Asymmetry	35:
326	Summary	354
326	The Golgi Apparatus	35!
328	The Golgi Apparatus Consists of Stacks of Disc- shaped Cisternae with Associated Small Vesicles	35!

The Golgi Apparatus Is Structurally and Biochemically Polarized $\ensuremath{\mathcal{D}}$	356	Adhesion Water-sol
The Golgi Apparatus Is Not Yet Understood in Biochemical Terms	356	Double-M Summary
Carbohydrate Structures Are Modified in the Golgi Apparatus	357	Referei
Oligosaccharide-trimming Pathways Are Elaborate and Precisely Programmed	359	
The Correct Program of Trimming Is Set by an Irreversible "Switch" Thrown Early in Oligosaccharide Processing	359	The C
Carbohydrate Modification in the Golgi Apparatus Can Be Detected by Autoradiography	359	The Org
Proteins Destined for Secretion Are Packaged into Golgi-associated Secretory Vesicles That Then Fuse with the Plasma Membrane	361	into Ch Histones A Proteins K
Membrane Components Are Recycled	362	The Assoc
Membrane Fusion and Recycling Can Be Demonstrated by Electron Microscopy	363	Formation Chromatin
Coated Vesicles Are Thought to Play a Major Part in the Intracellular Sorting of Proteins	365	Nucleosor Higher-Or
Why Have a Golgi Apparatus?	365	Histone H
Summary	366	Not All Nı Same Way
Lysosomes and Peroxisomes	367	The DNA to Specific
Lysosomes Are the Principle Sites of Intracellular	207	Proteins C
Digestion Histochemical Staining Demonstrates That Lysosomes	367	Hydrogen Geometry
Are Heterogeneous Organelles	367	Histones I
Primary Lysosomes Are Formed by Budding from the Golgi Apparatus	370	DNA-bind Regulation
Lysosomal Function in Cultured Cells from Patients Having a Lysosomal Enzyme Deficiency Can Be Corrected by Adding the Missing Enzyme to the Culture Medium	370	Nucleosor in Chroma Each Chro
Only Lysosomal Hydrolases with a Mannose- Phosphate-containing Oligosaccharide Are		DNA Mole Domains
Internalized	371	Bands on Higher Le
Intracellular Hydrolases Are Probably Directed to Primary Lysosomes by the Mannose-Phosphate Marker	372	Interphase Chromose
The Membrane of the Peroxisome Is Formed by Budding from the Smooth ER	373	Each Loór to a Separ
Peroxisomes Use Oxygen to Carry Out Catabolic Reactions	373	Different I Differently
The Enzyme Content of Peroxisomes Varies with Cell Type	374	Most Chro Proteins
A Sorting Mechanism Similar to That Used in the Lysosomal Pathway May Operate for Other		Summary RNA Syn
Intracellular Compartments	374 376	Three Diff
•		Eucaryote
Organelles with Double Membranes: The Nucleus, Mitochondria, and Chloroplasts	376	RNA Polyr Much Mo
Bacteria with Inner and Outer Cell Membranes May Be Viewed as Models of the Double-Membrane	377	Transcript Nucleosor
Organelles	577	New RNA

Membrane-Proteins May Move Between the Inner and Outer Bilayers at Adhesion Sites

Adhesion Sites May Also Play a Part in Transporting Water-soluble Molecules into the Lumen of Double-Membrane Organelles <i>Summary</i>	379 380
References	380
CHAPTER The Cell Nucleus	
The Organization of DNA into Chromosomes	386
Histones Are Among the Most Highly Conserved Proteins Known	386
The Association of Histones with DNA Leads to the Formation of Nucleosomes, the Unit Particles of Chromatin	388
Nucleosomes Are Packed Together to Form Regular Higher-Order Structures	388
Histone H1 Proteins $He \hat{l} \hat{p}$ Pack Nucleosomes Together	389
Not All Nucleosomes Are Packed in Precisely the Same Way	ັ 390
The DNA Helix Is Punctuated by Proteins That Bind to Specific DNA Sequences	392
Proteins Can Recognize Specific DNA Sequences by Hydrogen Bonding to Base Pairs and by Sensing Helix Geometry	394
Histones Restrict the Accessibility of DNA to Other DNA-binding Proteins and Can Thereby Affect Gene Regulation	395
Nucleosome Beads Can Be Nonrandomly Positioned in Chromatin	395

70 Each Chromosome Probably Contains One Very Long DNA Molecule Organized in a Series of Looped

Domains397371Bands on Mitotic Chromosomes Reveal an Even
Higher Level of Organization397371Interphase Genes Can Be Seen in Polytene397372Chromosomes401273to a Separate Unit of Function402

Different Domains of Chromatin Appear to Contain Differently Organized Nucleosomes 404 Most Chromosomal DNA Does Not Code for Essential Proteins 405

RNA Synthesis and RNA Processing 406

- Three Different RNA Polymerases Make RNA in
EucaryotesEucaryotes407RNA Polymerase II Transcribes Some DNA Sequences
Much More Often Than Others408Transcription Occurs on DNA Bound Up in
Nucleosomes411
- 377 New RNA Is Packaged in Ribonucleoprotein Particles 411
 The Precursors of Messenger RNA Are Covalently
 378 Modified at Both Ends 412

xvi List of Topics

RNA Processing Removes Long Nucleotide Sequences from the Middle of RNA Molecules \mathcal{A}^{t}	414
Small Nuclear Ribonucleoprotein Particles May Help Guide RNA Processing	415
Multiple Intron Sequences Can Be Removed from a Single RNA_Transcript	、4 1 7
The Same RNA Transcript Can Be Processed in Different Ways to Produce mRNAs Coding for Several Proteins	418
Different Proteins May Be Made from a Single DNA Coding Sequence at Different Stages of Cell Development	419
What Is a Gene?	413
The Export of RNA from the Nucleus Requires Molecular Signals	422
Ribosomal RNAs and Transfer RNAs Are Made on Tandemly Arranged Sets of Identical Genes	422
The Nucleolus Is a Ribosome-producing Machine	424
The Nucleolus Has a Highly Organized Structure The Nucleolus Is Reassembled on Specific	426
Chromosomes After Each Mitosis	427
Summary	427
The Nuclear Envelope	429
The Nucleus Is Enclosed by a Double Membrane	429
The Nuclear Lamina Helps to Determine Nuclear Shape	430
Nuclear Transport Occurs Through Nuclear Pores	ີ 43 2
Nuclear Pores Probably Transport Large Particles Selectively	433
The Inner Surface of the Nuclear Lamina Helps to Organize the Chromosomes	434
Summary	. 435
Basic Elements in the Control of Gene	
Expression	435
The Cells of a Multicellular Organism All Contain the Same DNA	436
Different Cell Types Synthesize Different Sets of Proteins	436
Different Cell Types Transcribe Different Sets of Genes	437
Repressor Proteins Inhibit the Transcription of Specific Genes in Bacteria	438
Gene Activator Proteins Probably Predominate in Higher Eucaryotic Cells	440
Two Interacting Gene Regulatory Proteins That Repress Each Other's Synthesis Produce a Stable "Memory" in a Bacterial Cell	442
Gene Regulatory Proteins That Act on Many Genes Simultaneously Are Probably Used in Combinations to Generate Different Tissues in Eucaryotes	443
In Principle, Many Different Cell Types Can Be Efficiently Specified by Combinations of a Few Gene Regulatory Proteins	444
Input from Several Different Gene Regulatory Proteins May Be Needed to Turn On a Single Gene	445
In Bacteria, DNA Supercoiling Facilitates the Transcription of Genes	446

. 2⁰

. .

ر

14	The Regulation of Gene Expression in Eucaryotic Cells Includes Types of Controls Not Found in Bacteria	447
15	Eucaryotic Gene Activation Mechanisms Appear to Loosen Chromatin Structure All Along a Gene	448
17	Eucaryotic Gene Activation Probably Occurs in Two Stages	449
18	Looped Chromatin Domains Unfold as They Are Transcribed in Polytene Chromosomes	450
10	Lampbrush Chromosomes Display Their Transcription Units in Extended Looped Domains	452
19 21	Altering the Ends of a Primary RNA Transcript Can Change the Protein Made	454
22	Are Important Controls Also Exerted by Alterations in the Specificity of RNA Processing and Export?	455
22	Summary	455
24 26	Gene Regulatory Mechanisms and Cell "Memory"	456
27	A Highly Condensed Fraction of Interphase Chromatin Contains Specially Inactivated Genes	456
27	Two Subclasses of Heterochromatin Can Be	457
29	An Inactive X Chromosome Is Inherited	458
29	Eucaryotic Genes Can Be Turned Off by a Novel Heritable Mechanism	459
30 32	Cooperatively Bound Clusters of Gene Regulatory Proteins Can, in Principle, Be Directly Inherited	460
33	Directly Inherited Patterns of DNA Methylation Help to Control Some Mammalian Genes	460
	In Special Cases, Local DNA Sequences Are Reversibly Rearranged to Turn Genes On and Off	462
35	Selected Portions of Chromosomes Can Be Either Deleted or Amplified in Somatic Cells	464
5	Major Rearrangements of Chromosomes Are Usually Deleterious	465
36	Summary	467
36	The Organization and Evolution of DNA Sequences	467
37	Genetic Recombination Drives Evolutionary Changes	468
38	A Large Fraction of the DNA of Most Eucaryotes Consists of Repeated Nucleotide Sequences	468
40	Frequent Genetic-Recombination Events Expand and Contract Serially Repeated Satellite DNA Sequences	468
42	The Evolution of Globins Shows How Random DNA Duplications Contribute to the Evolution of Organisms	470
	Recombination Events Also Create New Types of Protein Chains by Joining Coding Domains	471
43	Short, Interspersed Repeated Sequences Are Common in Eucaryotic Genomes	472
44	The Concept of "Selfish" DNA	472
	Cataclysmic Changes in Genomes Can Increase Biological Diversity	473
45	Summary	475
46	References	476

-

In Mammals, Mitochondrial Genes Are Maternally	533	The Core of a Ciliu Microtubules in a
Petite Mutants in Yeast Demonstrate the		Microtubules Are
Overwhelming Importance of the Cell Nucleus in Mitochondrial Biogenesis	534	The Ciliary Axone Sidearms Made of
A Large Fraction of the DNA in Yeast Mitochondria Is Noncoding	535	The Axoneme Mov Mechanism
The Complete Nucleotide Sequence of the Human		Dynein Is Respons
Mitochondrial Genome Is Known, and It Has Some Surprising Features	536	Cilia Can Be Disse
Chloroplasts Have a More Complex Genome Than Yeast and Animal Mitochondria	537	The Conversion of Bending Depends
The RNA Transcripts Made on Mitochondrial DNA Are Extensively Processed After Their Synthesis	537	Summary
Proteins Are Imported into Mitochondria and		General Featu
Chloroplasts by an Energy-requiring Process	538	Actin Filamen
Chloroplasts Make Most of Their Own Lipids, While Mitochondria Rely Mainly on Import	540	Microtubules Are 1 Sensitive to Specifi
The Biosynthesis of Mitochondria and Chloroplasts Is Largely Controlled by the Nucleus	540	Actin Filaments Ar Down in Cells
How Can Drugs That Inhibit Mitochondrial Protein Synthesis Be Used as Antibiotics Without Harming the		Specific Drugs Cha Polymerization and
Patient? Mitochondria and Chloroplasts Have Probably Evolved	540	The Polymérizatio Studied in Vitro
from Endosymbiotic Bacteria	541	Actin Filaments ar Structures That Gr
Why Do Mitochondria and Chloroplasts Have Their Own Genetic Systems?	542	Two Ends
Summary	543	Actin and Tubulin "Treadmilling" of S
References	544	Summary
CHAPTER		Microtubule C Microtubule-a
The Cytoskeleton	\mathbb{U}	Cytoplasmic Micro
Muscle Contraction	550	Proteins
A Myofibril Is the Contractile Element of a Skeletal	<u> </u>	Microtubules Grov
Muscle Cell	550	Centrioles and Bas and Functionally
Myofibrils Are Composed of Repeating Assemblies of Thick and Thin Filaments	550	Centrioles Usually
Contraction Occurs as Filaments Slide Past Each Other	551	What Is the Funct
Thin Filaments Consist Principally of Actin	553	Summary
Thick Filaments Are Composed Principally of Myosin	553	Actin Filamen
ATP Hydrolysis Drives Muscle Contraction	554	Proteins in No
Myosin is an Actin-activated ATPase	555	Microvilli Contain
Myosin Heads Bind to Actin Filaments	555	Bigid Amous of Co
	000	Rigid Arrays of Cr
Myosin Heads "Walk" Along Actin Filaments	556	Part in the Detect

558

558

559

560

561

561

561

Actin and Myosin Are Held in Position in the Myofibril by Other Proteins

Muscle Contraction Is Initiated by a Rise in Intracellular Ca^{2+}

Troponin and Tropomyosin Mediate the Ca²⁺ Regulation of Muscle Contraction

Smooth Muscle Myosin Is Activated by Ca²⁺-dependent Phosphorylation

Summary

Ciliary Movement

Cilia and Flagella Propagate Bending Movements

\$

~

,	
The Core of a Cilium Contains a Bundle of Parallel Microtubules in a "9 + 2" Arrangement	562
Microtubules Are Hollow Tubes Formed from Tubulin	563
The Ciliary Axoneme Contains Links, Spokes, and Sidearms Made of Protein	563
The Axoneme Moves by a Sliding Microtubule Mechanism	566
Dynein Is Responsible for the Sliding	567
Cilia Can Be Dissected Genetically	567
The Conversion of Microtubule Sliding to Ciliary Bending Depends on the Inner Sheath	569
Summary	569
• ·	
General Features of Microtubules and Actin Filaments as Dynamic Assemblies	569
Microtubules Are Highly Labile Structures That Are	909
Sensitive to Specific Antimitotic Drugs	570
Actin Filaments Are Continually Formed and Broken Down in Cells	571
Specific Drugs Change the State of Actin Polymerization and Thereby Affect Cell Behavior	572
The Polymerization of Actin and Tubulin Can Be	573
Actin Filaments and Microtubules Are Polar	
Structures That Grow at Different Rates from Their Two Ends	574
Actin and Tubulin Polymers Can Undergo a	
"Treadmilling" of Subunits	576
Sµmmary	577
Microtubule Organizing Centers and	
 Microtubule-associated Proteins	578
Cytoplasmic Microtubules Are Associated with Other Proteins	578
Microtubules Grow from Discrete Organizing Centers	578
 Centrioles and Basal Bodies Are Structurally Identical and Functionally Interconvertible	579
Centrioles Usually Arise by Duplication	580
What Is the Function of Centrioles?	581
Summary	581
Actin Filaments and Actin-binding	
Proteins in Nonmuscle Cells	582
Microvilli Contain Bundles of Actin Filaments	582
Rigid Arrays of Cross-linked Actin Filaments Play a Part in the Detection of Sound	583
Dynamic Actin-Filament Structures Occur on the Surface of Many Cells	584
•	004
Nonmuscle Cells Contain Small "Musclelike"	-
Assemblies The Assembly of Myosin in Nonmuscle Cells Is	586
Assemblies	586 587
Assemblies The Assembly of Myosin in Nonmuscle Cells Is Ca ²⁺ -dependent Actin Filaments Are Often Anchored in Cell Membranes	
Assemblies The Assembly of Myosin in Nonmuscle Cells Is Ca ²⁺ -dependent Actin Filaments Are Often Anchored in Cell	587

,	
Cross-linking Proteins Can Produce an Actin Gel	590
Fragmenting Proteins Can Produce a Ca ²⁺ -dependent	-
Liquefaction of Actin Gels	590
The Contraction of Cytoplasmic Gels Is Mediated by Myosin	591
Summary	591
Intermediate Filaments	593
Intermediate Filaments Consist of Fibrous	
Polypeptides That Vary Greatly in Size	593
Disassembly of Intermediate Filaments May Require	594
Different Cell Types Contain Intermediate Filaments	
of Distinct Composition	594
Keratin Filaments Strengthen Epithelial Cell Sheets	595
Do Intermediate Filaments Have Nonstructural	
Functions?	596
Summary	596
Organization of the Cytoskeleton	597
organization of the cytosketeton	001
The Cytoskeleton Can Be Seen in Three Dimensions in the Electron Microscope	597
The Cytoskeleton Can Be Seen in Three Dimensions	
The Cytoskeleton Can Be Seen in Three Dimensions in the Electron Microscope Organelles and Soluble Proteins Can Be Associated with the Cytoskeleton Extensive Changes in the Cytoskeleton Are Produced	597
The Cytoskeleton Can Be Seen in Three Dimensions in the Electron Microscope Organelles and Soluble Proteins Can Be Associated with the Cytoskeleton Extensive Changes in the Cytoskeleton Are Produced by a Single Gene of a Transforming Virus	597
The Cytoskeleton Can Be Seen in Three Dimensions in the Electron Microscope Organelles and Soluble Proteins Can Be Associated with the Cytoskeleton Extensive Changes in the Cytoskeleton Are Produced	597 599
The Cytoskeleton Can Be Seen in Three Dimensions in the Electron Microscope Organelles and Soluble Proteins Can Be Associated with the Cytoskeleton Extensive Changes in the Cytoskeleton Are Produced by a Single Gene of a Transforming Virus Microtubules May Be the Overall Organizers of the	597 599 600
The Cytoskeleton Can Be Seen in Three Dimensions in the Electron Microscope Organelles and Soluble Proteins Can Be Associated with the Cytoskeleton Extensive Changes in the Cytoskeleton Are Produced by a Single Gene of a Transforming Virus Microtubules May Be the Overall Organizers of the Cytoskeleton The Cytoskeleton Enables Cells to Respond to the	597 599 600 600
The Cytoskeleton Can Be Seen in Three Dimensions in the Electron Microscope Organelles and Soluble Proteins Can Be Associated with the Cytoskeleton Extensive Changes in the Cytoskeleton Are Produced by a Single Gene of a Transforming Virus Microtubules May Be the Overall Organizers of the Cytoskeleton The Cytoskeleton Enables Cells to Respond to the Physical Nature of a Solid Surface Cytoskeleton Organization Can Be Passed from a	597 599 600 600 602
The Cytoskeleton Can Be Seen in Three Dimensions in the Electron Microscope Organelles and Soluble Proteins Can Be Associated with the Cytoskeleton Extensive Changes in the Cytoskeleton Are Produced by a Single Gene of a Transforming Virus Microtubules May Be the Overall Organizers of the Cytoskeleton The Cytoskeleton Enables Cells to Respond to the Physical Nature of a Solid Surface Cytoskeleton Organization Can Be Passed from a Parent Cell to Its Daughters Cytoskeletal Organization Can Be Transmitted Across	597 599 600 600 602 602
The Cytoskeleton Can Be Seen in Three Dimensions in the Electron Microscope Organelles and Soluble Proteins Can Be Associated with the Cytoskeleton Extensive Changes in the Cytoskeleton Are Produced by a Single Gene of a Transforming Virus Microtubules May Be the Overall Organizers of the Cytoskeleton The Cytoskeleton Enables Cells to Respond to the Physical Nature of a Solid Surface Cytoskeleton Organization Can Be Passed from a Parent Cell to Its Daughters Cytoskeletal Organization Can Be Transmitted Across Cell Membranes	597 599 600 600 602 602 603
The Cytoskeleton Can Be Seen in Three Dimensions in the Electron Microscope Organelles and Soluble Proteins Can Be Associated with the Cytoskeleton Extensive Changes in the Cytoskeleton Are Produced by a Single Gene of a Transforming Virus Microtubules May Be the Overall Organizers of the Cytoskeleton The Cytoskeleton Enables Cells to Respond to the Physical Nature of a Solid Surface Cytoskeleton Organization Can Be Passed from a Parent Cell to Its Daughters Cytoskeletal Organization Can Be Transmitted Across Cell Membranes How Do Cells Move?	597 599 600 600 602 602 603 604

Cell Growth

. .

and Division
The Control of Cell Division
The Cells in a Multicellular Organism Divide at Very Different Rates
Differences in Cell-Cycle Times Are Due Mainly to Variations in the Length of G_1
Determination of Cell-Cycle Times
A Special "Trigger Protein" May Control Cell Division
Cell Division Is Regulated by a Variety of "Feedback Control" Mechanisms
Normal Mammalian Cells Grown in Culture Will Stop Dividing When They Run Out of Space
Positional Signals Also Control Cell Division
Cancer Cells Have Lost Their Normal Growth Control
Summary

CHAPTER

590	Tumor Viruses as Tools for Studying the Control of the Cell Cycle	621
590	Oncogenes Are Identified Through the Methods of Molecular Genetics	623
591	The Oncogenes of RNA Tumor Viruses Are the Best	
591	Understood	625
593	Oncogenes Frequently Code for Protein Kinases Increased Levels of a Normal Cellular Protein Can	626
593	Destroy Normal Cell Growth Regulation	627
000	Active Oncogenes Have Been Isolated Directly from	000
594	Human Tumors - Summary	628 628
594	5	
594 595	Events in the S Phase	629
000	During the S Phase, Clusters of Replication Forks Become Simultaneously Active on Each Chromosome	630
596	New Histones Are Assembled into Chromatin as DNA	000
596	Replicates The Orientation of Replication Origins Relative to	632
597	Genes May Have Important Biological Consequences	635
597	Different Genetic Regions on the Same Chromosome Replicate at Distinct Times During the S Phase	635
599	Replication Times During the S Phase Are Correlated' with Interphase Chromatin Structure	637
600	How Is the Timing of DNA Replication Controlled?	638
600	Chromatin-bound Factors Ensure That Each Region of the DNA Is Replicated Only Once During Each S Phase	638
000	Summary	639
602		
602 602	The Logic of the Cycle Most Proteins Are Synthesized Continuously	639 640 640
	The Logic of the Cycle Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of	640
602 603	The Logic of the Cycle Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely	640 640 641
602 603 604	The Logic of the Cycle Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis	640 640
602 603 604 605	The Logic of the Cycle Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely "Determine the Cell Mass at Mitosis The G ₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When	640 640 641 642
602 603 604 605	The Logic of the Cycle Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G ₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis	640 640 641 642 644 644
602 603 604 605	The Logic of the Cycle Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely "Determine the Cell Mass at Mitosis The G ₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When	640 640 641 642 644
602 603 604 605	The Logic of the Cycle Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G ₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis	640 640 641 642 644 644
602 603 604 605 605	 The Logic of the Cycle Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division Cell Division Is Traditionally Divided into Six Stages 	640 640 641 642 644 644 645
602 603 604 605	 The Logic of the Cycle Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division 	640 640 641 642 644 644 645 646
602 603 604 605 605 611 612	 The Logic of the Cycle Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division Cell Division Is Traditionally Divided into Six Stages Some Events in Mitosis Depend on the Mitotic Spindle While Others Do Not The Spindle Contains Organized Arrays of Microtubules in Dynamic Equilibrium Between 	640 640 641 642 644 644 645 646 646 647
602 603 604 605 605 611 612 613	 The Logic of the Cycle Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division Cell Division Is Traditionally Divided into Six Stages Some Events in Mitosis Depend on the Mitotic Spindle While Others Do Not The Spindle Contains Organized Arrays of Microtubules in Dynamic Equilibrium Between Assembly and Disassembly 	640 640 641 642 644 644 645 646 646
602 603 604 605 605 611 612	 The Logic of the Cycle Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division Cell Division Is Traditionally Divided into Six Stages Some Events in Mitosis Depend on the Mitotic Spindle While Others Do Not The Spindle Contains Organized Arrays of Microtubules in Dynamic Equilibrium Between 	640 640 641 642 644 644 645 646 646 647
602 603 604 605 605 611 612 613 613	 The Logic of the Cycle Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division Cell Division Is Traditionally Divided into Six Stages Some Events in Mitosis Depend on the Mitotic Spindle While Others Do Not The Spindle Contains Organized Arrays of Microtubules in Dynamic Equilibrium Between Assembly and Disassembly Spindle Formation at Prophase Is Largely Controlled by the Mitotic Chromosome Consists of Two Chromatids and a Pair of Kinetochores That Bind to 	 640 640 641 642 644 645 646 647 647
602 603 604 605 605 611 612 613 617 618	 The Logic of the Cycle Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division Cell Division Is Traditionally Divided into Six Stages Some Events in Mitosis Depend on the Mitotic Spindle While Others Do Not The Spindle Contains Organized Arrays of Microtubules in Dynamic Equilibrium Between Assembly and Disassembly Spindle Formation at Prophase Is Largely Controlled by the Mitotic Centers That Define the Poles Each Mitotic Chromosome Consists of Two 	 640 640 641 642 644 644 645 646 647 647 647 652
602 603 604 605 605 611 612 613 613 617 618 618	 The Logic of the Cycle Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division Cell Division Is Traditionally Divided into Six Stages Some Events in Mitosis Depend on the Mitotic Spindle Contains Organized Arrays of Microtubules in Dynamic Equilibrium Between Assembly and Disassembly Spindle Formation at Prophase Is Largely Controlled by the Mitotic Chromosome Consists of Two Chromatids and a Pair of Kinetochores That Bind to the Ends of Microtubules The Chromosome Alignment at Metaphase Is Generated by Interactions Between the Kinetochore 	 640 640 641 642 644 644 645 646 647 647 652 652
602 603 604 605 605 611 612 613 617 618	 The Logic of the Cycle Most Proteins Are Synthesized Continuously Throughout Interphase The Cell Cycle Proceeds by an Obligatory Series of Sequential Reactions Controls Operating Early in the Cycle Largely Determine the Cell Mass at Mitosis The G₂ Phase Serves to Prepare Cells for Mitosis Cell-Cycle Times Can Be Drastically Shortened When Not Limited by the Rates of Biosynthesis Summary Cell Division Cell Division Is Traditionally Divided into Six Stages Some Events in Mitosis Depend on the Mitotic Spindle Contains Organized Arrays of Microtubules in Dynamic Equilibrium Between Assembly and Disassembly Spindle Formation at Prophase Is Largely Controlled by the Mitotic Chromosome Consists of Two Chromatids and a Pair of Kinetochores That Bind to the Ends of Microtubules The Chromosome Alignment at Metaphase Is 	 640 640 641 642 644 644 645 646 647 647 647 652

List of Topics XX

The Sister Chromatids Separate Suddenly at -4° Anaphase

At Anaphase the Chromosomes Are Pulled Toward the Poles and the Two Poles Are Pushed Apart

A Dyneinlike ATPase Is Thought to Generate the Force That Pushes the Poles Apart in Anaphase, But a Different Mechanism Seems to Move the Chromosomes to the Poles

At Telophase the Nuclear Envelope Initially Re-forms Around Individual Chromosomes

The Mitotic Spindle Determines the Site of Cytoplasmic Cleavage During Cytokinesis

Actin and Myosin Generate the Forces for Cleavage

Cytokinesis Occurs by a Completely Different Mechanism in Plant Cells with Cell Walls Cytokinesis Must Allow the Cytoplasmic Organelles to

Be Faithfully Inherited

The Elaborate Mitotic Process of Higher Organisms Evolved Gradually from the Procaryotic Fission Mechanisms

Summary			668
References	•	-	668

CHAPTER

References

Cell-Cell Adhesion and the Extracellular Matrix

Intercellular Recognition and Cell Adhesion

Myxobacteria Exploit the Advantages of Social Behavior

The Assembly of Slime Mold Amoebae into a Multicellular Slug Involves Chemotaxis and Specific Cell Adhesion

Species-specific Cell Aggregation in Sponges Is Mediated by a Large Extracellular Aggregation Factor

Dissociated Embryonic Vertebrate Cells Preferentially Associate with Cells of the Same Tissue

Cells from Different Tissues Display a Hierarchy of Adhesiveness

Summary

Cell Junctions

Desmosomes Anchor Cells Together

Tight Junctions Form a Permeability Barrier Across **Cell Sheets**

Gap Junctions Allow Small Molecules to Pass Directly from Cell to Cell

Why Are So Many Cells Electrically and Metabolically Coupled via Gap Junctions?

Most Cells in Early Embryos Are Ionically Coupled Cells May Control the Permeability of Their Gap Junctions

Gap Junctions Are Composed of Channels That Directly Connect the Interiors of the Interacting Cells Summary

	The Extracellular Matrix	692
655	The Extracellular Matrix Consists Primarily of Fibrous Proteins Embedded in a Hydrated Polysaccharide Gel	692
655	Collagen Is the Major Protein of the Extracellular Matrix	693
658	Collagen Chains Have an Unusual Amino Acid	696
659	During Secretion, Procollagen Molecules Are Cleaved to Form Collagen Molecules, Which Self-assemble into Fibrils	697
660	Once Formed, Collagen Fibrils Are Greatly Strengthened by Covalent Cross-linking	699
662 	Elastin Is a Cross-linked, Random-Coil Protein That Gives Tissues Their Elasticity	701
663	Proteoglycans and Hyaluronic Acid Are Major Constituents of the Extracellular Matrix	702
666	Glycosaminoglycan Chains Occupy Vast Amounts of Space and Form Hydrated Gels	705
666	Glycosaminoglycan Chains May Be Highly Organized in the Extracellular Matrix	705
668 668	Fibronectin Is an Extracellular-Matrix Glycoprotein That Promotes Cell Adhesion	707
	The Basal Lamina Is a Specialized Extracellular Matrix That Contains a Unique Type of Collagen	709
	Basal Laminae Perform Diverse and Complex Functions	711
2	Intracellular Actin Filament Bundles Direct the Organization of Matrix Macromolecules on Cell Surfaces and Thereby Organize the Extracellular Matrix	711
	In Reciprocal Fashion, an Ordered Extracellular Matrix Influences the Organization and Behavior of the Cells It Contains	712
6 7 4 ·	Summary	713
14	References	713

Chemical Signaling 676 **Between Cells** 679

674

674

80	Three Different Strategies of Chemical Signaling: Local Chemical Mediators,	*
	Hormones, and Neurotransmitters	718
81 82	The Hypothalamus Is the Main Regulator of the Endocrine System	719
32 83	Different Cells Respond in Different Ways to the Same Chemical Signal	719
84	Some Cellular Responses to Chemical Signals Are Rapid and Transient, While Others Are Slow and Long-lasting	723
3	Signaling Molecules Can Be Either Water-soluble or Lipid-soluble	724
3	Local Chemical Mediators Are Rapidly Destroyed After They Are Secreted	724
	Some Signaling Molecules Released by Nerve Terminals Probably Act as Local Chemical Mediators	7 0.0
1	Rather Than as Neurotransmitters	726
	Some Hormones and Local Chemical Mediators Act as Specific Growth Factors	727
	Summarv	729

CHAPTER

Signaling Mediated by Intracellular Receptors: Mechanisms of Steroid	`	Cyclic AMP A Cellular Prote
Hormone Action	729	Phosphorylas
Steroid-Hormone-Receptor Complexes Bind to Chromatin and Regulate the Transcription of Specific	с	Be Activated Chemical Sig
Genes	730	The Reversib
Steroid Hormones Often Induce Both Primary and		Regulates a L
Secondary Responses	731	Ca ²⁺ Alters t
Steroid Hormones Regulate Different Genes in		Ca ²⁺ -binding
Different Target Cells	731	Does Cyclic (
Summary	733	Messenger?
Signaling Mediated by Cell-Surface		Extracellular Use of Second
Receptors: Cyclic AMP and Calcium Ions		The Concent
as Second Messengers	733	If It Is Contin
The Use of Labeled Ligands Revolutionized the Study of Cell-Surface Receptors	733	Rate Cells Can Res
Protein Hormones and Growth Factors Are Ingested		Summary
by Receptor-mediated Endocytosis	734	
Cell-Surface Receptors Act as Transducers by Regulating Enzymes or Ion Channels in the Plasma	,	Target Cel Some Cells B
Membrane	735	Their Surface
Cyclic AMP Is a Ubiquitous Intracellular Mediator	. 736	Some Cell-Su
Receptor and Adenylate Cyclase Molecules Are	,	Inactivated by
Separate Proteins that Functionally Interact in the Plasma Membrane	737	Morphine-ind the Result of
Receptors Activate Adenylate Cyclase Molecules		Chemical Sign
Indirectly Through a GTP-binding Protein	738	Useful Model
	738 739	Useful Model Bacterial Che Behavior
Indirectly Through a GTP-binding Protein Ca ²⁺ Also Functions as a Ubiquitous Intracellular	739	Useful Model Bacterial Che
Indirectly Through a GTP-binding Protein Ca ²⁺ Also Functions as a Ubiquitous Intracellular Mediator The Activation of Some Cell-Surface Receptors Opens		Useful Model Bacterial Che Behavior Chemotaxis-c
Indirectly Through a GTP-binding Protein Ca ²⁺ Also Functions as a Ubiquitous Intracellular Mediator The Activation of Some Cell-Surface Receptors Opens Membrane-bound Ca ²⁺ Channels <i>Summary</i>	739 7 <u>42</u>	Useful Model Bacterial Che Behavior Chemotaxis-c Classes of Pro
Indirectly Through a GTP-binding Protein Ca ²⁺ Also Functions as a Ubiquitous Intracellular Mediator The Activation of Some Cell-Surface Receptors Opens Membrane-bound Ca ²⁺ Channels Summary The Mode of Action of Cyclic AMP and	739 7 <u>42</u> 742	Useful Model Bacterial Che Behavior Chemotaxis-c Classes of Pro Protein Meth
Indirectly Through a GTP-binding Protein Ca ²⁺ Also Functions as a Ubiquitous Intracellular Mediator The Activation of Some Cell-Surface Receptors Opens Membrane-bound Ca ²⁺ Channels <i>Summary</i>	739 7 <u>42</u>	Useful Model Bacterial Che Behavior Chemotaxis-c Classes of Pro Protein Meth A Model for I

	Cyclic AMP Also Regulates the Dephosphorylation of Cellular Proteins	745
9	Phosphorylase Kinase Illustrates How an Enzyme Can Be Activated Only Transiently by an Extracellular Chemical Signal	746
0	The Reversible Covalent Modification of Proteins Regulates a Large Number of Cellular Processes	747
1	Ca ²⁺ Alters the Conformation of Intracellular Ca ²⁺ -binding Proteins	748
1 3	Does Cyclic GMP Act as an Intracellular Second Messenger?	749
-	Extracellular Signals Are Amplified Enormously by the Use of Second Messengers and Enzymatic Cascades	749
3	The Concentration of a Molecule Can Change Quickly If It Is Continuously Degraded or Removed at a Rapid Rate	750
3	Cells Can Respond Gradually or Suddenly to Signals	750 751
J	Summary	751
4		733
	Target Cell Adaptation	754
5	Some Cells Become Desensitized by Endocytosing Their Surface Receptors	754
6	Some Cell-Surface Receptors Are Reversibly	
	Inactivated by Prolonged Ligand Binding	° 754
7	Morphine-induced Target Cell Desensitization Is Not the Result of Receptor Inactivation	754 755
7 8	Morphine-induced Target Cell Desensitization Is Not	
	Morphine-induced Target Cell Desensitization Is Not the Result of Receptor Inactivation Chemical Signaling in Unicellular Organisms Provides	755
8 9	Morphine-induced Target Cell Desensitization Is Not the Result of Receptor Inactivation Chemical Signaling in Unicellular Organisms Provides Useful Models for Study Bacterial Chemotaxis Is a Simple Kind of Intelligent	755 756
8	Morphine-induced Target Cell Desensitization Is Not the Result of Receptor Inactivation Chemical Signaling in Unicellular Organisms Provides Useful Models for Study Bacterial Chemotaxis Is a Simple Kind of Intelligent Behavior Chemotaxis-deficient Mutants Have Revealed Four	755 756 757
8 9 2	Morphine-induced Target Cell Desensitization Is Not the Result of Receptor Inactivation Chemical Signaling in Unicellular Organisms Provides Useful Models for Study Bacterial Chemotaxis Is a Simple Kind of Intelligent Behavior Chemotaxis-deficient Mutants Have Revealed Four Classes of Proteins Involved in Bacterial Chemotaxis	755 756 757 759
8 9 2	Morphine-induced Target Cell Desensitization Is Not the Result of Receptor Inactivation Chemical Signaling in Unicellular Organisms Provides Useful Models for Study Bacterial Chemotaxis Is a Simple Kind of Intelligent Behavior Chemotaxis-deficient Mutants Have Revealed Four Classes of Proteins Involved in Bacterial Chemotaxis Protein Methylation Is Responsible for Adaptation	755 756 757 759 760

From Cells to Multicellular Organisms

Germ Cells and Fertilization

The Benefits of Sex

In Multicellular Animals the Diploid Phase Is Complex and Long, the Haploid Simple and Fleeting 769

770

Sexual Reproduction Gives a Competitive Advantage to Organisms in an Unpredictably Variable Environment	771
Sexual Reproduction Helps Establish Favorable Alleles	
in a Large Population	771
New Genes Evolve by Duplication and Divergence	773
Sexual Reproduction Keeps a Diploid Species Diploid	773
A Diploid Species Has a Spare Copy of Each Gene	
Free to Mutate to Serve a New Function	773

```
لے
```

PART

A Diploid Species Can Rapidly Enrich Its Genome by the Addition of New Genes Summary

Meiosis

Meiosis-Involves Two Nuclear Divisions Rather Than One

Genetic Reassortment Is Enhanced by Crossing Over Between Homologous Nonsister Chromatids

A Synaptonemal Complex Mediates Chromosome Pairing

Recombination Nodules Are Thought to Mediate the **Chromatid Exchanges**

Chiasmata Play an Important Part in Chromosome Segregation in Meiosis

Pairing of the Sex Chromosomes Ensures That They Also Segregate

Meiotic Division II Resembles a Normal Mitosis Summary

Gametes

An Egg Is the Only Cell in a Higher Animal Able to Develop into a New Individual

Eggs are Highly Specialized Cells with Unique Features

Eggs Develop in Stages

Many Eggs Grow to Their Large Size Through Special Mechanisms

Hormones Induce Egg Maturation and Ovulation

Oogenesis Is Wasteful

Sperm Are Highly Adapted for Delivering Their DNA to an Egg Sperm Are Produced Continuously in Many Mammals

Sperm Nuclei Are Haploid, But Sperm Cell Differentiation Is Directed by the Diploid Genome Summarv

Fertilization

A Sperm Must Be Activated Before It Can Fertilize an Egg Sperm-Egg Adhesion Is Mediated by Species-specific Proteins Egg Activation Is Mediated by Changes in Intracellular Ion Concentrations The Rapid Depolarization of the Egg Membrane Prevents Further Sperm-Egg Fusions, Thereby Mediating the Fast Block to Polyspermy The Cortical Reaction Is Responsible for the Late Block to Polyspermy An Increase in Intracellular Free Ca²⁺ Initiates Egg Development A Rise in the Intracellular pH in Some Organisms Induces the Late Synthetic Events of Egg Activation

Mammalian Eggs Can Be Fertilized in Vitro Summary

References

CHAPTER 775 **Cellular Mechanisms of** 776 Development 776 **Cleavage and Blastula Formation** 814 778 Cleavage Produces Many Cells from One 814 The Polarity of the Embryo Depends on the Polarity 778 of the Egg 815 The Blastula Consists of an Epithelium Surrounding a 779 Cavity 815 Summarv 816 786 Gastrulation, Neurulation, and Somite 786 Formation 816 Gastrulation Transforms a Hollow Ball of Cells into a 787 Three-layered Structure 816 787 The Ability of Cells to Extend, Adhere, and Contract Is 788 the Universal Basis of Morphogenetic Movement 818 819 Gastrulation in Amphibians 788 Movements Are Organized About the Blastopore 820 The Endoderm Will Form the Gut and Associated, 788 Organs Such as the Lungs and Liver 821 The Mesoderm Will Form Connective Tissues, 789 Muscles, and the Vascular and Urogenital Systems 821 790 The Ectoderm Will Form the Epidermis and the Nervous System 822 791 The Neural Tube Is Formed Through Coordinated 793~ Changes in Cell Shape 822 Blocks of Mesoderm Cells Uncouple to Form Somites 795 on Either Side of the Body Axis 823 796 The Vertebrate Body Plan Is First Formed in Miniature and Then Maintained as the Embryo Grows 824 797 Summary 824 797 **Early Steps in Pattern Formation:** 800 The Mouse 825 Mammalian Development Involves an Added 801 Complication 826 The Steps Before Gastrulation 826 801 Organogenesis and Growth Before Birth 828 Studies of Chimeras Show That All of the Cells of the 803 Very Early Mammalian Embryo Are Functionally Equivalent 828 804 Position in the Morula Determines the Fate of a Cell 830 A Group of Founder Cells, Rather Than a Single Founder Cell, Gives Rise to a Particular Tissue or 805 Organ 830 806 Teratomas Can Arise From Embryos That Develop in the Wrong Environment 831 Cells from Teratocarcinomas Can Cooperate with 807 Normal Cells in a Chimera to Make a Normal Mouse 832 Summary 832 808 808 **Determination and Differentiation** 832 809 In Higher Eucaryotes, the Behavior of a Cell Depends on Its History as well as on Its Environment and Its **83**4 Genome

cells Often Become Determined for a Future pecialized Role Long Before They Differentiate overtly	834	Positional Information Along the Antero-Posterior Axis May Be Supplied by Gradations in the Magnitude of a Signal from the Polarizing-Region Cells	858
The Time of Cell Determination Can Be Discovered by Transplantation Experiments	835	The Polarizing Region of a Mammal or a Reptile Is Effective in the Chick Also	860
he Genetic Control of Development Is Best Studied n Drosophila	836	The Parts of the Limb Are Laid Down in Succession Along the Proximo-Distal Axis	860
the State of Determination of Imaginal Disc Cells Is Heritable	838	The Apical Ectodermal Ridge Delimits the Special Region of Mesenchyme from Which Successive Distal Parts Develop, But It Does Not Instruct the	
Sroups of Cells Occasionally Transdetermine Homoeotic Mutants Reveal Genes Whose Activities	838	Mesenchyme as to Which Parts It Should Form	860
Sontrol Cell Determination The Bithorax Complex Controls Differences Between	840	Positional Specification Along the Proximo-Distal Axis Depends on the Amount of Time Spent in the Progress Zone	861
Thoracic and Abdominal Segments	841	Neighboring Mesenchyme Cells in Early Chick Limb	001
The Larval Body Is Constructed by Modulation of a gundamental Pattern of Repeating Segments	842	Buds May Interact so as to Smooth Out Discontinuities in the Pattern of Positional Values	863
Mitotic Recombination Can Be Exploited to Produce Marked Mutant Clones of Cells	842	Some Limbs Can Regenerate	864
Sharp Demarcation Lines Separate Polyclonal	0.14	Cockroach Legs Undergo Intercalary Regeneration	864
Compartments	844	The Same Pattern of Positional Values Is Repeated in Successive Segments of the Cockroach Leg	866
Different Sets of Genes Are Active in the Cells of Different Compartments	846	Circumferential Intercalation Obeys the Same Rule as Proximo-Distal Intercalation	866
The State of Determination Is Built Up Combinatorially	846	Intercalation in the Epidermis Is a Two-dimensional Problem	867
The Extent of Cell Proliferation in <i>Drosophila</i> Is Not Determined by Counting Cell Divisions: Fast-growing Clones May Nearly Fill Their Compartment But Do		Regeneration of a Two-dimensional Patch Obeys the Rule of Intercalation	868
Not Make It Big Cell Determination in Vertebrates Resembles Cell	847	The Rule of Intercalation May Apply to Many Different Systems	869
Determination in Drosophila	848	Summary	869
Summary	848	Inductive Interactions in the	v
Patterns in Space	849	Development of Epithelia	870
Cells Are Assigned Different Characters According to	849	Mesoderm Induces Ectoderm to Form the Different Parts of the Neural Tube	870
Localized Determinants Are Sometimes Identifiable in the Cytoplasm of an Egg	ب 850	The Dermis Controls the Nature and Pattern of the Structures That Form from the Epidermis	870
The Determinant of Germ-Cell Character Is Localized at One End of the <i>Drosophila</i> Egg	850	Epithelium Invades Mesenchyme to Form the Tubules of a Gland	872
Cell Character Is Controlled by Spatial Cues	851	Summary	872
harp Differences of Character Emerge Gradually in Initially Uniform Population	852	Multicellular Development Studied Cell by Cell: The Nematode Worm	873
Positional Information Is Refined by Installments	852	Caenorhabditis elegans Is Anatomically and	079
Nonequivalence: Cells That Ultimately Differentiate in he Same Way Can Have Different Positional		Genetically Simple Nematode Development Is Essentially Invariant	873 874
Information	853	Cytokinesis Is Not Required for Cell Differentiation	875
Cells in Separate Fields May Be Supplied with Positional Information in the Same Way But Interpret It Differently	854	The Influence of Local Cell Interactions on the Behavior of Cells During Development Can Be Studied by Laser Microsurgery	876
Since Embryonic Fields Are Small, Gross Features of	07-	An "Anchor Cell" Controls Vulva Development	876
the Adult Must Be Determined Early Summary	855 855	A "Distal Tip Cell" Causes Continued Proliferation of Nearby Germ Cells	877
Positional Information		Cell Fate Can Be Controlled by Inhibitory Interactions	
n Limb Development	856	Among Cells in an Equivalence Group	878
The Developing Chick Limb Can Be Analyzed in	050	Summary Mignatomy Colls	879 • 880
Terms of a Three-dimensional System of Coordinates The Cells of the Polarizing Region Control the Antero- Posterior Patterning of Adjacent Tissue	856 858	Migratory Cells Cells Wander: Selective Cohesion May Stop Them from Straying from Their Proper Place	880
A A A A A A A A A A A A A A A A A A A	550		

J

、ρ

List of Topics

xxiii

Germ Cells Leave the Yolk Sac and Settle in the	· .
Genital Ridges	880
Muscle Cells in the Chick Limb Originate by Migration from the Somites	881
Cells Disperse from the Neural Crest and Form Many Different Tissues	881
The Pathways of Migration Are Defined by the Host Connective Tissue	882
The Differentiation of Neural Crest Cells Is Decided by the Local Environment	884
The Development of the Nervous System Poses	
Special Problems	884
Summary	885

References

CHAPTER

Ø

885

891

892

893

894

895

896

897

897 、

897

899

902

902

903

905

906

906

908

908

909

910

910

911

Differentiated Cells and the **Maintenance of Tissues**

Maintenance of the Differentiated State

Differentiated Cells Commonly Remember Their Character Even in Isolation: Pigment Epithelium of the Retina

The Extracellular Matrix That a Cell Secretes Helps Maintain the Cell's Differentiated State

Cell-Cell Interactions Can Modulate the Differentiated State

Some Structures Are Maintained by a-Continuing Interaction Between Their Parts: Taste Buds and Their Nerve Supply

An Agent That Causes Changes in DNA Methylation Can Cause Radical Alterations of Differentiated Character Summary

Tissues With Permanent Cells

The Cells at the Center of an Adult Lens Are Remnants of the Embryo

Most Permanent Cells Renew Their Parts: Photoreceptor Cells of the Retina

Summary

Renewal by Simple Duplication

The Liver Is an Interface Between the Digestive Tract and the Blood

Liver Cell Loss Stimulates Liver Cell Proliferation

Regeneration May Be Hindered by Uncoordinated Growth of the Components of a Mixed Tissue

Endothelial Cells Constitute the Fundamental Component of All Blood Vessels

New Endothelial Cells Are Generated by Simple **Duplication of Existing Endothelial Cells**

New Capillaries Form by Sprouting

Growth of the Capillary Network Is Controlled by Factors Released by the Surrounding Tissues Summary

Renewal by Stem Cells: Epidermis

Stem Cells Have the Ability to Divide Without Limit and to Give Rise to Differentiated Progeny

\sim The Epidermis Is Organized into Proliferative	Units 912
Differentiating Epidermal Cells Synthesize a S of Different Keratins as They Mature	èquence .9ٜ14
For Each Proliferative Unit, There Is an "Imme Stem Cell	ortal [;] 915
Stem Cell Potential May Be Maintained by Co with the Basal Lamina	ntact 915
Basal Cell Proliferation Is Regulated According Thickness of the Epidermis	g to the 916
Secretory Cells of the Skin Are Secluded in Gl and Have Different Population Kinetics	916
Summary	918
Renewal by Pluripotent Stem Cells Blood Cell Formation	: 918
New Blood Cells Are Generated in the Bone M	larrow 921
Bone Marrow Contains Pluripotent Stem Cells Can Establish Hematopoietic Colonies	923
The Number of Specialized Blood Cells Is Am by Divisions That Follow Commitment	924
Production of Erythrocytes Is Controlled Thro Hormonal Regulation of the Cell Divisions The Follow Commitment	
Specific Glycoprotein Hormones Control the S and Fate of the Different Classes of Committe	d
Hematopoietic Precursor Cells	927 927
Quiescent Stem Cells: Skeletal Mus	cle 928
Skeletal Muscle Cells Do Not Divide	929
New Skeletal Muscle Cells Form by Fusion of N_{0}^{0} black	۰.
Myoblasts	929
Muscle Differentiation Requires Coordinated in the Expression of Many Different Genes	Changes 929
Muscle Differentiation Requires Coordinated (in the Expression of Many Different Genes Some Myoblasts Persist as Satellite Cells in th	Changes 929 e Adult 931
Muscle Differentiation Requires Coordinated (in the Expression of Many Different Genes Some Myoblasts Persist as Satellite Cells in th The State of Differentiation of Skeletal Muscle	Changes 929 e Adult 931
Muscle Differentiation Requires Coordinated (in the Expression of Many Different Genes Some Myoblasts Persist as Satellite Cells in th	Changes 929 e Adult 931 Fibers
Muscle Differentiation Requires Coordinated (in the Expression of Many Different Genes Some Myoblasts Persist as Satellite Cells in th The State of Differentiation of Skeletal Muscle Can Be Modulated by Electrical Stimulation Summary Soft Cells and Tough Matrix: Grow	Changes 929 e Adult 931 Fibers 931 933
Muscle Differentiation Requires Coordinated (in the Expression of Many Different Genes Some Myoblasts Persist as Satellite Cells in th The State of Differentiation of Skeletal Muscle Can Be Modulated by Electrical Stimulation Summary Soft Cells and Tough Matrix: Grow Turnover, and Repair in Skeletal	Changes 929 e Adult 931 Fibers 931 933 th ,
Muscle Differentiation Requires Coordinated (in the Expression of Many Different Genes Some Myoblasts Persist as Satellite Cells in th The State of Differentiation of Skeletal Muscle Can Be Modulated by Electrical Stimulation Summary Soft Cells and Tough Matrix: Grow Turnover, and Repair in Skeletal Connective Tissue	Changes 929 e Adult 931 Fibers 931 933
Muscle Differentiation Requires Coordinated (in the Expression of Many Different Genes Some Myoblasts Persist as Satellite Cells in th The State of Differentiation of Skeletal Muscle Can Be Modulated by Electrical Stimulation Summary Soft Cells and Tough Matrix: Grow Turnover, and Repair in Skeletal	Changes 929 e Adult 931 Fibers 931 933 th , 933 933
Muscle Differentiation Requires Coordinated (in the Expression of Many Different Genes Some Myoblasts Persist as Satellite Cells in th The State of Differentiation of Skeletal Muscle Can Be Modulated by Electrical Stimulation Summary Soft Cells and Tough Matrix: Grow Turnover, and Repair in Skeletal Connective Tissue Cartilage Grows by Swelling Osteoblasts Secrete Bone Matrix While Osteool	Changes 929 e Adult 931 Fibers 931 933 th , 933 elasts 934
Muscle Differentiation Requires Coordinated (in the Expression of Many Different Genes Some Myoblasts Persist as Satellite Cells in th The State of Differentiation of Skeletal Muscle Can Be Modulated by Electrical Stimulation Summary Soft Cells and Tough Matrix: Grow Turnover, and Repair in Skeletal Connective Tissue Cartilage Grows by Swelling Osteoblasts Secrete Bone Matrix While Osteoc Erode It Cartilage Is Eroded by Osteoclasts to Make W	Changes 929 e Adult 931 Fibers 931 933 th , 933 elasts 934 ay for
Muscle Differentiation Requires Coordinated (in the Expression of Many Different Genes Some Myoblasts Persist as Satellite Cells in th The State of Differentiation of Skeletal Muscle Can Be Modulated by Electrical Stimulation Summary Soft Cells and Tough Matrix: Grow Turnover, and Repair in Skeletal Connective Tissue Cartilage Grows by Swelling Osteoblasts Secrete Bone Matrix While Osteoc Erode It Cartilage Is Eroded by Osteoclasts to Make W Bone	Changes 929 e Adult 931 Fibers 931 933 th, 933 elasts 934 ay for 937 938
Muscle Differentiation Requires Coordinated (in the Expression of Many Different Genes Some Myoblasts Persist as Satellite Cells in th The State of Differentiation of Skeletal Muscle Can Be Modulated by Electrical Stimulation Summary Soft Cells and Tough Matrix: Grow Turnover, and Repair in Skeletal Connective Tissue Cartilage Grows by Swelling Osteoblasts Secrete Bone Matrix While Osteoo Erode It Cartilage Is Eroded by Osteoclasts to Make W Bone Summary	Changes 929 e Adult 931 Fibers 931 933 th , 933 elasts 934 ay for 937 938 dy 938
Muscle Differentiation Requires Coordinated (in the Expression of Many Different Genes) Some Myoblasts Persist as Satellite Cells in the The State of Differentiation of Skeletal Muscle Can Be Modulated by Electrical Stimulation Summary Soft Cells and Tough Matrix: Grow Turnover, and Repair in Skeletal Connective Tissue Cartilage Grows by Swelling Osteoblasts Secrete Bone Matrix While Osteoc Erode It Cartilage Is Eroded by Osteoclasts to Make W Bone Summary Territorial Stability in the Adult Boo Epithelial Organization Helps to Keep Cells in Proper Territories Normal Somatic Cells Are Destined to Die for of the Survival of the Germ Cell	Changes 929 e Adult 931 Fibers 931 933 th, 933 elasts 934 ay for 937 938 dy 938 the Sake 939
Muscle Differentiation Requires Coordinated (in the Expression of Many Different Genes Some Myoblasts Persist as Satellite Cells in th The State of Differentiation of Skeletal Muscle Can Be Modulated by Electrical Stimulation Summary Soft Cells and Tough Matrix: Grow Turnover, and Repair in Skeletal Connective Tissue Cartilage Grows by Swelling Osteoblasts Secrete Bone Matrix While Osteoc Erode It Cartilage Is Eroded by Osteoclasts to Make W Bone Summary Territorial Stability in the Adult Boo Epithelial Organization Helps to Keep Cells in Proper Territories Normal Somatic Cells Are Destined to Die for of the Survival of the Germ Cell Cancer Cells Break the Rules of Altruistic Soci Behavior	Changes 929 e Adult 931 Fibers 931 933 th, 933 elasts 934 ay for 937 938 dy 938 a Their 939 the Sake 939 ial 940
Muscle Differentiation Requires Coordinated (in the Expression of Many Different Genes Some Myoblasts Persist as Satellite Cells in th The State of Differentiation of Skeletal Muscle Can Be Modulated by Electrical Stimulation Summary Soft Cells and Tough Matrix: Grow Turnover, and Repair in Skeletal Connective Tissue Cartilage Grows by Swelling Osteoblasts Secrete Bone Matrix While Osteoc Erode It Cartilage Is Eroded by Osteoclasts to Make W Bone Summary Territorial Stability in the Adult Boo Epithelial Organization Helps to Keep Cells in Proper Territories Normal Somatic Cells Are Destined to Die for of the Survival of the Germ Cell Cancer Cells Break the Rules of Altruistic Soci Behavior Summary	Changes 929 e Adult 931 Fibers 931 933 th, 933 elasts 934 ay for 937 938 dy 938 a Their 939 the Sake 939 ial 940 941
Muscle Differentiation Requires Coordinated (in the Expression of Many Different Genes Some Myoblasts Persist as Satellite Cells in th The State of Differentiation of Skeletal Muscle Can Be Modulated by Electrical Stimulation Summary Soft Cells and Tough Matrix: Grow Turnover, and Repair in Skeletal Connective Tissue Cartilage Grows by Swelling Osteoblasts Secrete Bone Matrix While Osteoc Erode It Cartilage Is Eroded by Osteoclasts to Make W Bone Summary Territorial Stability in the Adult Boo Epithelial Organization Helps to Keep Cells in Proper Territories Normal Somatic Cells Are Destined to Die for of the Survival of the Germ Cell Cancer Cells Break the Rules of Altruistic Soci Behavior	Changes 929 e Adult 931 Fibers 931 933 th, 933 elasts 934 ay for 937 938 dy 938 a Their 939 the Sake 939 ial 940

CHAPTER The Immune System	7	The L and H Chains Are Folded into Repeating Domains X-ray Diffraction Studies Have Revealed the Structure	976
کے The Cellular Basis of Immunity	レ 952	of Immunoglobulin Domains and Antigen-binding Sites in Three Dimensions	977
The Immune System Is Composed of Billions of Lymphocytes	952	Summary	979
B Lymphocytes Make Humoral Antibody Responses; T Lymphocytes Make Cell-mediated Immune Responses	952	The Generation of Antibody Diversity	979
All Lymphocytes Develop from Pluripotent Hemopoietic Stem Cells		More than One Gene Segment Codes for Each L and H Chain	980
Cell-Surface Markers Make It Possible to Distinguish and Separate T and B Cells	954 955	Two Gene Segments Code for the V Region of Each L Chain	981
Most Lymphocytes Continuously Recirculate Between		Three Gene Segments Code for the V Region of Each H Chain	983
the Blood and Lymph The Immune System Works by Clonal Selection	956 956	Antibody Diversity Is Increased by Somatic Recombination, by the Combinatorial Joining of Light	
Most Antigens Stimulate Many Different Lymphocyte	958	and Heavy Chains, and by Somatic Mutation The Mechanisms of Antibody Gene Expression Ensure	983
Immunological Memory Is Due to Clonal Expansion and Lymphocyte Differentiation	, 959	That B Cells Are Monospecific The Switch from a Membrane-bound to a Secreted	984
The Failure to Respond to Self Antigens Is Due to Acquired Immunological Tolerance	960 -	Form of the Same Antibody Occurs Through a Change in the H-Chain RNA Transcripts	985
Immunological Tolerance to Foreign Antigens Can Also Be Induced in Mature Animals	- 962	B Cells Can Switch the Class of Antibody They Make Idiotypes on Antibody Molecules Form the Basis of an	986
Summary	963	Immunological network	986
The Functional Properties of Antibodies	963	Summary	988
The Antigen-specific Receptors on B Cells Are	000	The Complement System	988
Antibody Molecules B Cells Can Be Stimulated to Make Antibodies in a	964 S	Complement Activation Involves a Sequential Proteolytic Cascade	988
Culture Dish	964 [°]	The Classical Pathway Is Activated by Antibody- Antigen Complexes	989
Antibodies Have Two Identical Antigen-binding Sites An Antibody Molecule Is Composed of Four	964 •	The Alternative Pathway Can Be Directly Activated by Microorganisms	990
Polypeptide Chains—Two Identical Light Chains and Two Identical Heavy Chains	965	The Assembly of the Late Complement Components	· 991
There Are Five Different Classes of H Chains, Each	966	The Complement Cascade Is Tightly Regulated and	
Antibodies Can Have Either κ or λ Light Chains But Never Both	969	Designed to Attack a Nearby Membrane Summary	992 993
The Strength of an Antibody-Antigen Interaction Depends on Both the Affinity and the Number of		T Lymphocytes and Cell-mediated	•
Binding Sites	969	Immunity	993
Antibody-Antigen Interactions Can Be Measured in Antional Many Ways	971	The T-Cell-Receptor Enigma Different T-Cell Responses Are Mediated by Different	993
The Size of the Antigen-Antibody Complexes Formed Depends on the Valence of the Antigen and on the		T-Cell Subpopulations	994
Relative Concentrations of the Antigen and Antibody	972	Cytotoxic T Cells Kill Virus-infected Cells Helper T Cells Are Required for Most B Cells and T	995
Antibodies Recruit Complement and Various Cells to Fight Infection	973	Cells to Respond to Antigen	995
Summary	974	Helper T Cells Activate Macrophages by Secreting Lymphokines	996
The Fine Structure of Antibodies	974	Suppressor T Cells Inhibit the Responses of Other Lymphocytes	997
Myeloma Proteins Are Homogeneous Antibodies Made by Plasma-Cell Tumors	974	Helper and Suppressor T Cells Can Recognize Foreign Antigens on the Target Lymphocyte Surface	997
L and H Chains Consist of Constant and Variable Regions	975	Regulatory T Cells May Communicate with Their Target Lymphocytes by Secreting Soluble Helper or	000
The L and H Chains Each Contain Three Hypervariable Regions That Together Form the Antigen-binding Site	975	Suppressor Factors Transplantation Reactions Are T-Cell-mediated Immune Responses	998 999
	010	minute norponoe	500

.

 \mathcal{V}

...

xxvi List of Topics

``

T Cells Appear to be Obsessed with Foreign MHC Antigens	9 99	Action Potentials Provide for Rapid Long-Distance Communication	1030
There Are Two Classes of MHC Molecules	1000	Myelination Speeds Conduction	1030
Class I MHC Glycoproteins Are Found on Virtually All Nucleated Cells and Are Extremely Polymorphic	1000	Summary	1032
The Genes-Coding for Class II MHC Glycoproteins	1000	Synaptic Transmission	1035
Were Originally Discovered as Immune Response (<i>Ir</i>) Genes	1001	The Neuromuscular Junction Is the Best Understood Synapse	1036
T Cells Recognize Foreign Antigens in Association with Self MHC Molecules	1002	Voltage-gated Ca ²⁺ Channels Couple Action Potentials to Exocytosis	1036
MHC Glycoproteins May Serve as Guides for Activating the Appropriate Subpopulations of T Cells	1003	Neurotransmitter Release Is Quantal and Random	1038
Helper T Cells May Recognize Fragments of Foreign Antigens on the Surface of Antigen-presenting Cells	1004	Ligand-gated Channels Convert the Chemical Signal Back into Electrical Form	1040
Why Are MHC Glycoproteins So Polymorphic?	1005	The Acetylcholine Receptor Is a Ligand-gated Cation Channel	1040
The Immune System Is Ineffective Against Most Tumors	1006	Acetylcholine Is Removed from the Synaptic Cleft by Diffusion and by Hydrolysis	1041
The Immune System Has Had to Solve Three Major		Some Synapses Are Excitatory, Others Inhibitory	1042
Problems in Antigen Recognition Summary	1006 1007 [ూ]	Nounotronomittens at Come Sumanana Act Through	
		Intracellular Second Messengers Rather Than by Directly Gated Ion Flows	1044
References	1008	Many Synaptic Inputs Combine to Drive a Single Neuron	1045
CHAPTER		The Membrane Potential in the Cell Body Represents a Spatial Summation of Postsynaptic Potentials	1046
The Nervous System	K	Temporal Summation Translates the Frequency of Presynaptic Signals into the Size of a PSP	1046
Cells of the Nervous System:		The Grand PSP Is Translated into Nerve Impulse Frequency for Long-Distance Transmission	1047
A Preliminary Sketch Nerve Cells Carry Electrical Signals	5 1013 1015	Encoding Requires a Combination of Different	1010
Nerve Cells Communicate Chemically at	1015	Voltage-sensitive Channels Early K ⁺ Channels Help to Make the Firing Rate	1048
Synapses	1016	Proportional to the Stimulus	1049
Neural Tissue Consists of Neurons and Glial Cells	. 1016	Adaptation Lessens the Response to an Unchanging Stimulus	1049
Summary		Not All Signals Are Delivered via the Axon	1045
		Summary	1052
Voltage-gated Channels and the Action Potential	1018	• .	
The Na ⁺ -K ⁺ Pump Charges the Battery That Powers	1010	Channel Regulation and Memory	1052
the Action Potential	1018	The Distribution of Ion Channels in a Muscle Cell Changes in Response to Denervation	1053
The Membrane Potential Depends on Selective Membrane Permeability	1019	The Receptivity of a Muscle Cell Can Be Controlled by Electrical Stimulation	1054
Ion Channels Are Characterized by Their Selectivity, Their Gating, and Their Sensitivity to Specific Toxins	1022	The Site of a Synaptic Contact Is Marked by a Persistent Specialization of the Basal Lamina	1054
Depolarization Causes Na ⁺ Channels First to Open and Then to Become Inactivated	1023	Synaptic Plasticity Provides a Mechanism for Memory	1055
Fluctuations in the Transmembrane Current Suggest		A Short-Term Memory Is Registered by Modification of Channel Proteins	1056
That Individual Channels Are Opening and Closing Randomly	1023	Memory Remains Mysterious	1056
Gated Channels Open and Close in an All-or-None	1024	Summary	1058
Fashion The Membrane Electric Field Controls the Energies of		Sensory Input	1058
the Different Channel Conformations	1025	Stimulus Magnitude Is Reflected in the Receptor	
Voltage-gated Na ⁺ Channels Are Responsible for the Action Potential	1027	Potential Sense Receptors Are Tuned to Detect Specific Stimuli	1059 1061
Action Potentials Are All-or-None	1027	Rod Cells Can Detect a Single Photon	1061
Voltage Changes Can Spread Passively Within a		The Visual World Is Mapped onto a Sequential	2000
Neuron	1028	Hierarchy of Arrays of Neurons	106 4

 \sim

.•

XXVIII List of Topics

Vacuoles Can Function as Storage Organelles

Plant Cells Exocytose But Generally Seem Not to Endocytose Macromolecules

Golgi Vesicles Deliver Cell-Wall Material to Specific Regions of Plasma Membrane

Cellulose Synthesis Occurs at the Surface of Plant Cells

Cortical Microtubules Orient the Extracellular Deposition of Cellulose Microfibrils

The Movement of Materials in Large Plant Cells is Driven by Cytoplasmic Streaming

The Interaction of Actin and Myosin Drives Cytoplasmic Streaming in Giant Algal Cells

Regions of the Plant Cell Cytoskeleton Can Be Reorganized in Response to Local Stimuli Summary

1124	Cell Growth and Division	1133
1124	Most New Plant Cells Arise in Special Areas Called Meristems	1134
1125	The Shape of a Growing Plant Cell Is Determined by the Organization of Cellulose Microfibrils	1135
1128	A Preprophase Band of Microtubules Marks the Future Plane of Cell Division	1136
1128	Hormones Help Control the Growth and Shape of Plants	1139
1130	Tissue Culture Facilitates Studies of Mechanisms of Cell Determination in Plants	1139
1131	Plant Cells Without Their walls Can Be Manipulated Much Like Animal Cells	1142
	Summary	1143
1132		
1133	References	1144

Ş