Principles of Random Signal Analysis and Low Noise Design

į

The Power Spectral Density and its Applications

> Roy M. Howard Curtin University of Technology Perth, Australia

A JOHN WILEY & SONS, INC., PUBLICATION

Contents

Preface			ix
About the Author			
1.	Intro	duction	1
2.	Back	ground: Signal and System Theory	3
	2.1	Introduction / 3	
		Background Theory / 3	
	2.3	Functions, Signals and Systems / 7	
	2.4	Signal Properties / 12	
	2.5	Measure and Lebesgue Integration / 23	
	2.6	Signal Classification / 35	
	2.7		
		Fourier Theory / 38	
		Random Processes / 44	
	2.10	Miscellaneous Results / 45	
		Appendix 1: Proof of Theorem 2.11 / 46	
		Appendix 2: Proof of Theorem 2.13 / 47	
		Appendix 3: Proof of Theorem 2.17 / 47	
		Appendix 4: Proof of Theorem 2.27 / 49	
		Appendix 5: Proof of Theorem 2.28 / 50	
		Appendix 6: Proof of Theorem 2.30 / 52	
		Appendix 7: Proof of Theorem 2.31 / 53	
		Appendix 8: Proof of Theorem 2.32 / 56	

3. The Power Spectral Density

- 3.1 Introduction / 59
- 3.2 Definition / 60
- 3.3 Properties / 65
- 3.4 Random Processes / 67
- 3.5 Existence Criteria / 73
- 3.6 Impulsive Case / 74
- 3.7 Power Spectral Density via Autocorrelation / 78 Appendix 1: Proof of Theorem 3.4 / 84
 - Appendix 2: Proof of Theorem 3.5 / 85
 - Appendix 3: Proof of Theorem 3.8 / 88

Appendix 4: Proof of Theorem 3.10 / 89

4. Power Spectral Density Analysis

- 4.1 Introduction / 92
- 4.2 Boundedness of Power Spectral Density / 92
- 4.3 Power Spectral Density via Signal Decomposition / 95
- 4.4 Simplifying Evaluation of Power Spectral Density / 98
- 4.5 The Cross Power Spectral Density / 102
- 4.6 Power Spectral Density of a Sum of Random Processes / 107
- 4.7 Power Spectral Density of a Periodic Signal / 112
- 4.8 Power Spectral Density Periodic Component Case / 119
- 4.9 Graphing Impulsive Power Spectral Densities / 122 Appendix 1: Proof of Theorem 4.2 / 123 Appendix 2: Proof of Theorem 4.4 / 126 Appendix 3: Proof of Theorem 4.5 / 128 Appendix 4: Proof of Theorem 4.6 / 128 Appendix 5: Proof of Theorem 4.8 / 130 Appendix 6: Proof of Theorem 4.10 / 132 Appendix 7: Proof of Theorem 4.11 / 134 Appendix 8: Proof of Theorem 4.12 / 136

5. Power Spectral Density of Standard Random Processes—Part 1 138

- 5.1 Introduction / 138
- 5.2 Signaling Random Processes / 138
- 5.3 Digital to Analogue Converter Quantization / 152
- 5.4 Jitter / 155
- 5.5 Shot Noise / 160
- 5.6 Generalized Signaling Processes / 166 Appendix 1: Proof of Theorem 5.1 / 168 Appendix 2: Proof of Theorem 5.2 / 171 Appendix 3: Proof of Equation 5.73 / 173 Appendix 4: Proof of Theorem 5.3 / 174

Appendix 5: Proof of Theorem 5.4 / 176 Appendix 6: Proof of Theorem 5.5 / 177

6. Power Spectral Density of Standard Random Processes—Part 2 179

- 6.1 Introduction / 179
- 6.2 Sampled Signals / 179
- 6.3 Quadrature Amplitude Modulation / 185
- 6.4 Random Walks / 192
- 6.5 1/f Noise / 198
 Appendix 1: Proof of Theorem 6.1 / 200
 Appendix 2: Proof of Theorem 6.2 / 201
 Appendix 3: Proof of Theorem 6.3 / 202
 Appendix 4: Proof of Equation 6.39 / 204

7. Memoryless Transformations of Random Processes

- 7.1 Introduction / 206
- 7.2 Power Spectral Density after a Memoryless Transformation / 206
- 7.3 Examples / 211
 - Appendix 1: Proof of Theorem 7.1 / 223
 - Appendix 2: Fourier Results for Raised Cosine Frequency Modulation / 224

8. Linear System Theory

- 8.1 Introduction / 229
- 8.2 Impulse Response / 230
- 8.3 Input-Output Relationship / 232
- 8.4 Fourier and Laplace Transform of Output / 232
- 8.5 Input-Output Power Spectral Density Relationship / 238
- 8.6 Multiple Input-Multiple Output Systems / 243
 - Appendix 1: Proof of Theorem 8.1 / 246
 - Appendix 2: Proof of Theorem 8.2 / 248
 - Appendix 3: Proof of Theorem 8.3 / 249
 - Appendix 4: Proof of Theorem 8.4 / 251
 - Appendix 5: Proof of Theorem 8.6 / 252
 - Appendix 6: Proof of Theorem 8.7 / 253
 - Appendix 7: Proof of Theorem 8.8 / 255

9. Principles of Low Noise Electronic Design

- 9.1 Introduction / 256
- 9.2 Gaussian White Noise / 259
- 9.3 Standard Noise Sources / 264
- 9.4 Noise Models for Standard Electronic Devices / 266
- 9.5 Noise Analysis for Linear Time Invariant Systems / 269

229

206

256

- 9.6 Input Equivalent Current and Voltage Sources / 278
- 9.7 Transferring Noise Sources / 282
- 9.8 Results for Low Noise Design / 285
- 9.9 Noise Equivalent Bandwidth / 285
- 9.10 Power Spectral Density of a Passive Network / 287 Appendix 1: Proof of Theorem 9.2 / 291 Appendix 2: Proof of Theorem 9.4 / 294 Appendix 3: Proof of Conjecture for Ladder Structure / 296

Notation	300
References	302
Index	307