DISTRIBUTED ALGORITHMS AND PROTOCOLS

Michel Raynal

Professor of Computer Science IRISA (INRIA-CNRS, University of Rennes), France

Translated by Jack Howlett, St Cross College, Oxford

 Technische Hochschule Darmstadt

 FACHBEREICH INFORMATIK

 B I B L I O T H E K

 Inventar-Nr.:

 7560

 Sachgebiete:

 Standarts

JOHN WILEY & SONS

Chichester · New York · Brisbane · Toronto · Singapore

CONTENTS

`

Pre	Preface			ix
1	Intr	oducti	ion to distributed algorithms	1
-	1		allelism and distribution	1
	2		vorks and distributed systems	2
	_		General and local networks	2
			Characteristics of distributed systems	3
			What should be distributed, and why?	4
	3		ributed algorithms	2 2 3 4 5 aths 5 8 10
		3.1	Basic elements: processes, communication pa	oths 5
		3.2	Features of distributed algorithms	8
			Classifying distributed algorithms	10
•	4		e concepts and techniques	10
		4.1	The approach to design	10
		4.2	Concepts and techniques	11
		4.3	Communication $+$ ordering $=$ control	14
	Ref	erence		15
•	EI	<i></i>		10
2			and mutual exclusion algorithms	19
	1		oduction	19
	2 3		mutual exclusion problem	19
	3		Ricart and Agrawala/Suzuki Kasami algorithm	
		3.1 3.2	Overview of other algorithms	21
				21 22
			Principle of the algorithm	22
		3.4 2.5	The algorithm Proof of the algorithm	22
		3.3	Massages and time stamping	24 25
	4		Messages and time-stamping	23 26
	4		algorithm for regenerating the token A token circulating on a logical ring	26
		4.1	Loss of token: Misra's algorithm	20
	5		ctive algorithms	v 20 29
	5		Introduction	29
			The Chang and Roberts algorithm	30
		53	The Hirschberg and Sinclair algorithm	33
		5.4	The algorithm of Dolev, Klawe and Roden	33
		5.5	Other algorithms	40
	Ref	Ference		40
	nuj	cicnee		-71

3	Algo	orithms for detection and resolution of deadlock	43
	1	Introduction	43
		1.1 The problem of deadlock	43
		1.2 Characterization of deadlock situations	44
	2	Distribution of a centralized algorithm: Lomet's algorithms	49
		2.1 Global and local states	49
		2.2 Lomet's first algorithm: replication of the global	
		state	50
		2.3 Lomet's second algorithm: use of partial state	
		information	51
	3	The Rosenkrantz, Stearns and Lewis algorithm	53
		3.1 Principle of the algorithm: use of time-stamping	53
		3.2 'Wait-die' method	54
		3.3 'Wound-wait' method	55
		3.4 Comments on these algorithms	55
	4	Algorithms for detecting deadlocks	56
		4.1 Proposed methods	56
		4.2 Algorithms with centralized control	57
		4.3 Algorithms with hierarchical control	57
		4.4 Algorithms with distributed control	58
	5	Deadlocks due to communications: algorithm of Chandy,	
		Misra and Haas	58
		5.1 Resumé: features of the problem	58
		5.2 Assumptions and principles underlying the algorithm	59
		5.3 The CMH algorithm	59
		5.4 Other algorithms	64
	Refe	erences	64
4	Aloc	prithms for detecting termination	67
•	1	Introduction: the problem of termination	67
	-	1.1 Distributed termination	67
		1.2 Termination and deadlock	68
		1.3 Principles underlying the solutions	69
	2	Use of diffusing computation: algorithm of Dijkstra and	07
	-	Scholten	69
		2.1 Assumptions	69
		2.2 Basis of the algorithm	71
		2.3 The algorithm	71
		2.4 Comments on the algorithm, proof of validity	72
	3	Termination on a ring: algorithm of Dijkstra, Feijen and	
		van Gasteren	74
		3.1 Assumptions	74
		3.2 Principles of the algorithm	74
		3.3 Actions at a site	75
		3.4 The algorithm	76
		3.5 Disadvantages: Topor's algorithm	77
	4	Misra's algorithm	78
		4.1 Basis and assumptions	78
		1	

vi

	4.2 The token in Misra's algorithm	79
	4.3 The algorithm	79
	4.4 Some comments	81
5	Use of time-stamping: Rana's algorithm	81
	5.1 Context and assumptions	81
	5.2 Principle of the algorithm	82
	5.3 The algorithm	84
	5.4 Proof of correctness	85
6	A note on some other algorithms	87
Ref	erences	87
Pro	tocols for data transfer	89
1	Introduction	89
2	Protocols for the implementation of CSP	90
	2.1 The CSP language: a short introduction	90
	2.2 Silberschatz's protocol	93
	2.3 Bernstein's protocol	96
	2.4 Other protocols	103
3	Methods for reliable broadcasting of messages	103
	3.1 The problem	103
	3.2 Context of the problem, assumptions	104
	3.3 Principles of protocol	104
	3.4 Schneider, Gries and Schlichting's protocol	106
	3.5 Comments	109
Ref	Ferences	110
Ma	nagement of distributed data	113
1	Introduction	113
	1.1 Nature of the data	113
	1.2 Distribution of data	114
	1.3 Problems to be discussed	115

vii

115

115

Problems to be discussed Consistency of duplicated data Context of the problem Description of mutual inconsister

5

6

3

2.2	Detection of mutual inconsistency:	algorithm	of	
	Parker et al.	-		116
2.3	Maintaining mutual consistency			122
2.4	Initializing a new site			127
Dist	ribution of control algorithms			128
3.1	Introduction			128
3.2	Construction of a total ordering	,		128

5.1	miloduction			120
3.2	Construction of a total ordering	(~	1	128
3.3	Distributed atomicity	04	Ç	130
References	5		,	133

7	Problems of gaining consensus in the presence of uncertainties	
	(or how to avoid Byzantine quarrels)	137
	1 The problem of consensus	137
	1.1 The problem and its formulation	137

il

	1.2 Features of the solutions	139
2	The Lamport, Shostak and Pease algorithm	141
	2.1 Assumptions	141
	2.2 A criterion for impossibility	142
	2.3 Underlying principles of the solution	143
	2.4 The algorithm	144
	2.5 Proof of correctness	147
	2.6 Complexity of the algorithm	148
	2.7 Other assumptions concerning the network	149
	2.8 Other algorithms	150
3	Solutions using signed messages	151
	3.1 Assumptions, importance of signatures	151
	3.2 The Lamport, Shostak and Pease algorithm	152
	3.3 The Dolev and Strong algorithm	154
	3.4 The Dolev and Reischtug algorithms	156
4	Broadcasting in a bus-connected system	157
	4.1 The problem: assumptions	157
	4.2 The Babaoglu and Drummond algorithm	158
5	Conclusion	160
References		

3