Finite-Element-Formulierungen mit abgestimmten Approximationsräumen für die Modellierung piezoelektrischer Stab- und Schalenstrukturen

Zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS

von der Fakultät für

Bauingenieur-, Geo- und Umweltwissenschaften des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Dipl.-Ing. Dieter Legner

aus Bretten

Tag der mündlichen Prüfung: 16. Februar 2011

Hauptreferent: Prof. Dr.–Ing. habil. W. Wagner Korreferent: Prof. Dr.–Ing. habil. S. Klinkel

Karlsruhe 2011

Inhaltsverzeichnis

1	Einleitung			
	1.1	Motivation		
	1.2	Stand	der Forschung und Ziele der Arbeit	3
	1.3	Gliede	rung der Arbeit	6
2	Elel	ktrome	echanik deformierbarer Dielektrika	8
	2.1	Grund	llagen der Kontinuumsmechanik	8
		2.1.1	Kinematik finiter Deformationen	8
		2.1.2	Definition von Verzerrungsmaßen	10
	2.2	Grund	llagen der elektrostatischen Feldtheorie	12
		2.2.1	Mikroskopische Betrachtung	12
		2.2.2	Makroskopische Betrachtung	14
		2.2.3	Theorie der linearen Piezoelektrizität	16
	2.3 Bilanzgleichungen		gleichungen	17
		2.3.1	Massenbilanz	18
		2.3.2	Impulsbilanz	18
		2.3.3	Drehimpulsbilanz	19
		2.3.4	Ladungsbilanz	21
3	\mathbf{Sto}	ffgleicl	ungen deformierbarer Dielektrika	22
4	Ink niso	ompat chen Fe	ible Approximationsräume der FEM bei elektromecha eldproblemen	- 30
	4.1	Stabu	nodell eines in Dickenrichtung gepolten piezoelektrischen Sen-	
		sors .		30
		.4.1.1	Längsbeanspruchung	31
		4.1.2	Einachsige Biegebeanspruchung	31
		4.1.3	Querbeanspruchung	32
		4.1.4	Torsionsbeanspruchung	32
	4.2	Verall	gemeinerte Betrachtungsweise	33

5	Technologien der FEM zur Beseitigung inkompatibler Approxi- mationsräume 36			
	5.1	Konsis schen	stente lineare Approximation der mechanischen und elektri- Freiheitsgrade	36
	5.2	Appro	ximation mit Ansatzfunktionen höherer Ordnung \ldots .	38
6	Pie	zoelek	trische FE Schalenformulierung	40
	6.1	Vorbe	merkungen zur Modellbildung	40
	6.2	2 Kinematische Annahmen der Schalenformulierung		42
		6.2.1	Mechanischer Teil	42
		6.2.2	Elektrischer Teil	45
		6.2.3	Generalisierte Darstellung der kinematischen Schalengrößen	46
	6.3	Variat	ionsformulierung des Randwertproblems	46
		6.3.1	Green'sche Verzerrungen	46
		6.3.2	Elektrisches Feld	53
		6.3.3	Generalisierte Darstellung der unabhängigen Schalengrößen	55
		6.3.4	Formulierung des Randwertproblems	56
		6.3.5	Schwache Form und Linearisierung des Randwertproblems	58
	6.4	Finite	-Elemente-Approximation	59
		6.4.1	Approximation von Ausgangskonfiguration und Momentan- konfiguration der Schale	59
		6.4.2	Interpolation der Spannungen und der dielektrischen Ver- schiebungen	65
		6.4.3	Interpolation der Verzerrungen und des elektrischen Feldes	66
		6.4.4	Approximation der schwachen Form des Randwertproblems	68
7	Numerische Beispiele - Piezoelektrische Schalenformulierung			
	7.1	Piezoe	elektrische Patch-Tests	71
		7.1.1	Membranbeanspruchung durch Längsbelastung	72
		7.1.2	Membran beans pruchung durch ein elektrisches Feld $\ .$ $\ .$.	73
		7.1.3	Reine Biegebeanspruchung	73
		7.1.4	Querbeanspruchung	74

	7.2	Bimor	ph-Aktor	79
7.3 Schub- und Torsionsaktor			und Torsionsaktor	80
	7.4	Geschi	chteter Querschnitt unter Querbelastung	84
		7.4.1	Validierung der Schubsteifigkeit	85
		7.4.2	Mechanischer Sandwichquerschnitt	85
		7.4.3	Piezoelektrischer Multimorph	89
	7.5	Zylind	erförmiger Segmentaktor	91
	7.6	Dynan	nische Beanspruchung einer halbkreisförmigen Ringschale	96
8	Piez	zoelekt	rische FE 3D-Stabformulierung	101
	8.1	Vorber	nerkungen zur Modellbildung	101
	8.2 Kinematische Annahmen der Stabformulierung		atische Annahmen der Stabformulierung	102
		8.2.1	Mechanischer Teil	102
		8.2.2	Elektrischer Teil	105
		8.2.3	Generalisierte Darstellung der kinematischen Stabgrößen $\ $.	107
	8.3	Variat	ionsformulierung des Randwertproblems	108
		8.3.1	Green'sche Verzerrungen	108
		8.3.2	Elektrisches Feld	110
		8.3.3	Generalisierte Darstellung der unabhängigen Stabgrößen	113
		8.3.4	Formulierung des Randwertproblems	113
		8.3.5	Schwache Form und Linearisierung des Randwertproblems	115
	8.4	Finite	Elemente-Approximation	116
		8.4.1 ,	Approximation von Ausgangskonfiguration und Momentan- konfiguration des Stabes	116
		8.4.2	Interpolation der Spannungen und der dielektrischen Ver- schiebungen	118
		8.4.3	Interpolation der Verzerrungen und des elektrischen Feldes	119
		8.4.4	Approximation der schwachen Form des Randwertproblems	120

9	Numerische Beispiele - Piezoelektrische Stabformulierung 12				
	9.1	Piezoelektrische Patch-Tests	23		
		9.1.1 Längsbeanspruchung	24		
		9.1.2 Einachsige Biegebeanspruchung	25		
		9.1.3 Querbeanspruchung	26		
		9.1.4 Torsionsbeanspruchung	28		
		9.1.5 Beanspruchung durch ein elektrisches Feld $\ .$ 15	31		
	9.2	Piezoelektrischer Stab auf zwei Stützen	31		
	9.3	Piezoelektrischer Kragarm unter Endmoment	34		
	9.4	Kreisringsensor unter Querbelastung	36		
10	Zus	ammenfassung 13	38		
11	Aus	usblick 14			
12	12 Empfehlungen für die Praxis				
	12.1	Sensoren	41		
		12.1.1 Dehnseusoren	41		
		12.1.2 Biegesensoren	41		
	12.2	Aktoren	42		
		12.2.1 Unbehinderte Verformung $\ldots \ldots \ldots \ldots \ldots \ldots 1$	42		
		12.2.2 Keine unbehinderte Verformung	42		
A	Tra heit	ansformation zwischen lokalen und globalen elektrischen Frei- itsgraden 143			
в	Orthogonalisierungskoeffizienten für die EAS-Ansätze der Scha- len- und Stabformulierung 144				
	B.1	Schalenformulierung	.44		
	B.2	Stabformulierung	.45		
С	Her	Harleitung der analytischen Lösung für den Biegesensor hei Ouer.			
0	bela	belastung 146			

, · ·

D	Verlauf der Schubspannung über die Dicke bei einem geschich-			
	tete	n Querschnitt	149	
\mathbf{E}	E Materialdaten			
	E.1	Beispiel: Torsionsaktor	151	
	E.2	Beispiele: Dynamische Beanspruchung einer halbkreisförmigen Ring- schale und Kragarm unter Endmoment	151	
	E.3	Beispiele: Zylinderförmiger Segmentaktor und Kreisringsensor unter Querbelastung	152	
	E.4	Beispiel: Piezoelektrischer Stab auf zwei Stützen	152	
Li	Literatur 15			