SYNTHESIS AND OPTIMIZATION OF DIGITAL CIRCUITS

Giovanni De Micheli

Stanford University

									,
Technische Universität Darmstadt FACHBEREICH INFORMATIK									
					0			K	
Inventar-Nr.: MO7-00156									
Sachgebiete: Hardware									
Standort: $B + ID = H_i$									

McGraw-Hill, Inc.

New York St. Louis San Francisco Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto

CONTENTS

	Pre	face	xv
Part I	Cir	cuits and Models	
1	Intr	roduction	3
	1.1	Microelectronics	3
	1.2	Semiconductor Technologies and Circuit Taxonomy	5
•	1.3	Microelectronic Design Styles	6
	1.4	Design of Microelectronic Circuits	12
	1.5	Computer-Aided Synthesis and Optimization	14
		1.5.1 Circuit Models	15
		1.5.2 Synthesis	15
		1.5.3 Optimization	21
	1.6	Organization of the Book	27
	1.7	Related Problems	28
		1.7.1 A Closer Look at Physical Design Problems	30
		1.7.2 Computer-Aided Simulation	31
		1.7.3 Computer-Aided Verification	32
		1.7.4 Testing and Design for Testability	33
	1.8	Synthesis and Optimization:	
		A Historic Perspective	33
	1.9	References	35
2	Bac	ckground	36
	2.1	Notation	36
	2.2	Graphs	37
		2.2.1 Undirected Graphs	38
		2.2.2 Directed Graphs	39
		2.2.3 Perfect Graphs	40
	2.3	Combinatorial Optimization	42
		2.3.1 Decision and Optimization Problems	42
		2.3.2 Algorithms	43

ix

		2.5.5 Tractable and Intractable Problems	44
		2.3.4 Fundamental Algorithms	46
	2.4	Graph Optimization Problems and Algorithms	53
	•	2.4.1 The Shortest and Longest Path Problems	54
		2.4.2 Vertex Cover	59
		2.4.3 Graph Coloring	61
		2.4.4 Clique Covering and Clique Partitioning	64
	2.5	Boolean Algebra and Applications	67
		2.5.1 Boolean Functions	68
		2.5.2 Representations of Boolean Functions	72
		2.5.3 Satisfiability and Cover	85
	2.6	Perspectives	94
	2.7	References	95
	2.8	Problems	96
3	Har	dware Modeling	97
	3.1	Introduction	97
	3.2	Hardware Modeling Languages	98
		3.2.1 Distinctive Features of Hardware Languages	100
		3.2.2 Structural Hardware Languages	102
		3.2.3 Behavioral Hardware Languages	103
		3.2.4 HDLs Used for Synthesis	108
	3.3	Abstract Models	115
		3.3.1 Structures	115
		3.3.2 Logic Networks	116
•		3.3.3 State Diagrams	118
		3.3.4 Data-flow and Sequencing Graphs	119
	3.4	Compilation and Behavioral Optimization	126
		3.4.1 Compilation Techniques	127
		3.4.2 Optimization Techniques	131
	3.5	Perspectives	136
	3.6	References	137
	3.7	Problems	138
Dowt II	Λ	shits street I area! Sweethasis and Outimization	
Part II	AIC	chitectural-Level Synthesis and Optimization	
4	Arc	hitectural Synthesis	141
	4.1	Introduction	141
	4.2	Circuit specifications for Architectural Synthesis	143
		4.2.1 Resources	143
		4.2.2 Constraints	145
	4.3	The Fundamental Architectural Synthesis Problems	146
		4.3.1 The Temporal Domain: Scheduling	146
		4.3.2 The Spatial Domain: Binding	150
		4.3.3 Hierarchical Models	153
		4.3.4 The Synchronization Problem	154
	4.4	Area and Performance Estimation	155
		4.4.1 Resource-Dominated Circuits	156

			CONTENTS	XI
		4.4.2	General Circuits	156
	4.5	Strategie	es for Architectural Optimization	158
		4.5.1	Area/Latency Optimization	159
		4.5.2	Cycle-Time/Latency Optimization	160
		4.5.3	Cycle-Time/Area Optimization	163
	4.6	Data-Pa	th Synthesis	163
	4.7	Control-	-Unit Synthesis	166
		4.7.1	Microcoded Control Synthesis for Non-Hierarchical Sequencing Graphs with Data-Independent Delay	
			Operations	167
		4.7.2	Microcoded Control Optimization Techniques*	168
		4.7.3	Hard-Wired Control Synthesis for Non-Hierarchical	
			Sequencing Graphs with Data-Independent Delay	
			Operations	170
		4.7.4	Control Synthesis for Hierarchical Sequencing Graphs	
			with Data-Independent Delay Operations	171
		4.7.5	Control Synthesis for Unbounded-Latency Sequencing	
			Graphs*	174
	4.8	Synthes	sis of Pipelined Circuits	178
	4.9	Perspec	tives	181
	4.10	Referen	ices	182
	4.11	Problem	18	183
5	Sch	eduling	g Algorithms	185
-	5.1	Introduc		185
	5.2		el for the Scheduling Problems	186
	5.3		ling without Resource Constraints	187
	5.5	5.3.1	Unconstrained Scheduling: The ASAP Scheduling	10,
		3.3.1	Algorithm	188
		5.3.2	Latency-Constrained Scheduling:	100
			The ALAP Scheduling Algorithm	188
		5.3.3	Scheduling Under Timing Constraints	190
		5.3.4	Relative Scheduling*	193
	5.4	Schedul	ling with Resource Constraints	198
		5.4.1	The Integer Linear Programming Model	198
		5.4.2	Multiprocessor Scheduling and Hu's Algorithm	202
		5.4.3	Heuristic Scheduling Algorithms:	
			List Scheduling	207
		5.4.4	Heuristic Scheduling Algorithms: Force-directed	
			Scheduling*	211
		5.4.5	Other Heuristic Scheduling Algorithms*	215
	5.5		ling Algorithms for Extended Sequencing Models*	216
		5.5.1	Scheduling Graphs with Alternative Paths*	216
	5.6		ling Pipelined Circuits*	218
		5.6.1	Scheduling with Pipelined Resources*	220
		5.6.2	Functional Pipelining*	222
		5.6.3	Loop Folding*	224
	5.7	Perspec	ctives	225

	5.8	References	225		
	5.9	Problems	226		
6	Resi	source Sharing and Binding			
•	6.1	Introduction	229 229		
	6.2		230		
	0.2	Sharing and Binding for Resource-Dominated Circuits	233		
		6.2.1 Resource Sharing in Non-Hierarchical Sequencing Graphs	233		
		6.2.2 Resource Sharing in Hierarchical Sequencing Graphs			
		6.2.3 Register Sharing	240		
		6.2.4 Multi-Port Memory Binding	243		
		6.2.5 Bus Sharing and Binding	245		
	6.3	Sharing and Binding for General Circuits*	245		
		6.3.1 Unconstrained Minimum-Area Binding*	246		
		6.3.2 Performance-Constrained and Performance-Directed			
		Binding*	249		
		6.3.3 Considerations for Other Binding Problems*	250		
	6.4	Concurrent Binding and Scheduling	250		
	6.5	Resource Sharing and Binding for Non-Scheduled Sequencing			
		Graphs	252		
		6.5.1 Sharing and Binding for Non-Scheduled Models	253		
		6.5.2 Size of the Design Space*	255		
	6.6	The Module Selection Problem	257		
	6.7	Resource Sharing and Binding for Pipelined Circuits	260		
	6.8	Sharing and Structural Testability*	262		
	6.9	Perspectives	263		
•	6.10	References	264		
	6.11	Problems	265		
,					
Part III	Log	gic-Level Synthesis and Optimization			
7	Two	o-Level Combinational Logic Optimization	269		
,	7.1	Introduction	269		
	_		209		
	7.2	Logic Optimization Principles	270		
		7.2.1 Definitions			
		7.2.2 Exact Logic Minimization	277		
		7.2.3 Heuristic Logic Minimization	283		
	7 0 .	7.2.4 Testability Properties	286		
	7.3	Operations on Two-Level Logic Covers	288		
		7.3.1 The Positional-Cube Notation	288		
		7.3.2 Functions with Multiple-Valued Inputs	289		
		7.3.3 List-Oriented Manipulation	291		
		7.3.4 The Unate Recursive Paradigm	294		
	7.4	Algorithms for Logic Minimization	304		
		7.4.1 Expand	304		
		7.4.2 Reduce*	308		
		7.4.3 Irredundant*	310		
		7.4.4 Essentials*	313		
		7.4.5 The Espresso Minimizer	315		

				CONTENTS	xiii
	7.5	Symbol	ic Minimization and Encoding Problems		318
		7.5.1	Input Encoding		319
		7.5.2	Output Encoding*		327
		7.5.3	Output Polarity Assignment		333
	7.6	Minimiz	zation of Boolean Relations*		334
	7.7	Perspec	tives		338
	7.8	Referen	ices		339
	7.9	Problem	as ·		341
8	Mul	tiple-L	evel Combinational Logic Optimization	n	343
	8.1	Introduc	ction		343
	8.2	Models	and Transformations for Combinational Networks		345
		8.2.1	Optimization of Logic Networks		348
		8.2.2	Transformations for Logic Networks		350
		8.2.3	The Algorithmic Approach		
			to Multiple-Level Logic Optimization		356
	8.3	The Alg	gebraic Model		360
		8.3.1	Substitution		363
		8.3.2	Extraction and Algebraic Kernels		365
		8.3.3	Decomposition		378
	8.4	The Bo	olean Model		380
		8.4.1			380
		8.4.2	Boolean Simplification and Substitution		396
		8.4.3	Other Optimization Algorithms Using Boolean		
			Transformations*		408
	8.5		sis of Testable Networks		415
	8.6	Algorit	hms for Delay Evaluation and Optimization		418
		8.6.1	Delay Modeling		418
		8.6.2	Detection of False Paths*		421
		8.6.3	Algorithms and Transformations for Delay Optim	ization	426
	8.7		ased Systems for Logic Optimization		433
	8.8	Perspec		ř	435
	8.9	Referen	,		436
	8.10	Problem	ns ,		439
9	-		Logic Optimization		441
	9.1	Introdu			441
	9.2	-	tial Circuit Optimization Using State-Based Models	\$	443
		9.2.1	State Minimization		444
			State Encoding		449
		9.2.3	Other Optimization Methods and Recent Develop	ments*	455
	9.3		tial Circuit Optimization Using Network Models		458
		9.3.1	Retiming		462
		9.3.2	Synchronous Circuit Optimization		
			by Retiming and Logic Transformations		475
		9.3.3	Don't Care Conditions in Synchronous Networks		481
	9.4	_	t Finite-State Machine Traversal Methods		490
		9.4.1	State Extraction		491
	0	9.4.2	Implicit State Minimization*		494
	9.5	I estabi	lity Considerations for Synchronous Circuits		495

XIV CONTENTS

	9.6	Perspectives	498
	9.7	References	500
	9.8	Problems	502
10	Cell	-Library Binding	504
	10.1	Introduction	504
	10.2	Problem Formulation and Analysis	505
	10.3	Algorithms for Library Binding	509
		10.3.1 Covering Algorithms Based on Structural Matching	512
		10.3.2 Covering Algorithms Based on Boolean Matching	526
		10.3.3 Covering Algorithms and Polarity Assignment	530
		10.3.4 Concurrent Logic Optimization and Library Binding*	533
		10.3.5 Testability Properties of Bound Networks	536
	10.4	Specific Problems and Algorithms for Library Binding	537
		10.4.1 Look-Up Table FPGAs	538
		10.4.2 Anti-Fuse-Based FPGAs	541
	10.5	Rule-Based Library Binding	544
		10.5.1 Comparisons of Algorithmic and Rule-Based Library	
		Binding	545
	10.6	1	546
	10.7	References	546
	10.8	Problems	548
Part IV	<u>C</u> 01	nclusions	
11	Stat	e of the Art and Future Trends	551
	11.1	The State of the Art in Synthesis	551
	11.2	Synthesis Systems	553
		11.2.1 Production-Level Synthesis Systems	554
		11.2.2 Research Synthesis Systems	555
		11.2.3 Achievements and Unresolved Issues	558
	11.3	The Growth of Synthesis in the Near and Distant Future	559
		11.3.1 System-Level Synthesis	561
		11.3.2 Hardware-Software Co-Design	562
	11.4	Envoy	565
	11.5	References	565
	Inde	ex	567