A.A. Kirillov (Ed.)

Representation Theory and Noncommutative Harmonic Analysis I

Fundamental Concepts. Representations of Virasoro and Affine Algebras

With 11 Figures

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest

I. Introduction to the Theory of Representations and Noncommutative Harmonic Analysis

A.A. Kirillov

Translated from the Russian by V. Souček

Contents

Cha	apter 1. A Historical Sketch	5
§1.	Foreword	5
§2.	Finite-Dimensional Representations	5
§3.	Infinite-Dimensional Representations	7
§4.	The General Theory of Infinite-Dimensional Representations	9
§5.	Induced Representations	10
§6.	Representations of Semisimple Groups	10
§7.	The Method of Orbits	12
§8.	Infinite-Dimensional Groups	13
§9.	Representation of Lie Supergroups and Superalgebras	14
Cha	apter 2. Basic Notions of the Theory of Representations	15
§1.	Group Actions	15
Ç	1.1. Actions	15
	1.2. The Category of G-spaces	16
	1.3. Actions of Topological Groups	18
§2.		20
-	2.1. Basic Definitions	20

A. A.	Kirillov
-------	----------

	2.2. The Category of Linear Representations	21
0.0	2.3. Projective Representations	23
§3.	Noncommutative Harmonic Analysis	25
	3.1. The Classification of Representations	25
	3.2. The Computation of the Spectrum of a Representation	25
	3.3. The Functors Res and Ind	26
	3.4. The Fourier Transform on a Group	26
	3.5. Special Functions and Representation Theory	27
	3.6. The Computation of Generalized and Infinitesimal	
	Characters of Representations of Lie Groups	27
Cha	apter 3. Representations of Finite Groups	28
§1.	The General Theory of Complex Finite-Dimensional	
	Representations	28
	1.1. The Formulation of Basic Results	28
	1.2. Schur's Lemma and Its Consequences	29
§2.	The Theory of Characters and Group Algebras	32
0	2.1. Basic Properties of Characters	32
	2.2. The Group Algebra	33
	2.3. The Fourier Transform	34
§3.	The Decomposition of Representations	36
§4.	The Connection Between Representations of a Group	00
34.	and Its Subgroups	38
	4.1. The Functors Res and Ind	38
	,	·40
	4.2. Induced Representations	
0 -	4.3. Big and Spherical Subgroups	42
§5.	The Representation Ring. Operations on Representations	43
	5.1. Virtual Representations	43
	5.2. Operations on Representations	44
§6.	Representations over Other Fields and Rings	46
	6.1. Basic Definitions and Facts	46
	6.2. Real Representations	48
	6.3. Integer and Modular Representations	49
§7.	Projective Representations of Finite Groups	49
§8.	Representations of the Symmetric Group	50
	8.1. Notation and Subsidiary Constructions	50
	8.2. Irreducible Representations	52
	8.3. Examples of Representations	53
	8.4. Branching Rule	55
	8.5. The Ring R	56
Cha	apter 4. Representations of Compact Groups	57
<u>۶</u> 1	Invariant Integration	57
§1.	0	
	1.1. The Haar Measure	57

.

	I. Theory of Representations and Noncommutative Harmonic Analysis	3
	1.2. Examples	58
	1.3. Integration of Vector and Operator Valued Functions	60
§2.		61
0	2.1. The Formulation of Results	61
	2.2. Characters	63
	2.3. Group Algebras and the Fourier Transform	63
	2.4. The Decomposition of Representations	65
§3.	Representations of Groups SU(2) and SO(3)	66
	3.1. The Group SU(2)	66
	3.2. The Group SO(3)	70
	3.3. Harmonic Analysis on the Two-Dimensional Sphere	71
Cha	apter 5. Finite-Dimensional Representations of a Lie Group	73
§1.	Lie Groups and Lie Algebras	73
§2.	Representations of Solvable Lie Groups	78
§3.	The Enveloping Algebra	79
§4.	Laplace (Casimir) Operators	83
§5.	Representations of the Group SU(2) (Infinitesimal Approach)	85
§6.	Representations of Semisimple Lie Groups	88
	6.1. Semisimple Lie Groups and Algebras	88
	6.2. Weights and Roots	89
	6.3. Representations of Semisimple Lie Groups and Algebras	91
	6.4. Some Formulas	94
	apter 6. General Theory of Infinite-Dimensional Unitary	
Rep	presentations	96
81.	Algebras of Operators in a Hilbert Space and the Decomposition	
3-1	of Unitary Representations	96
	1.1. C^* -algebras	96
	1.2. States and Representations of C^* -algebras	98
	1.3. Von Neumann Algebras	98
	1.4. Direct Integrals of Hilbert Spaces and von Neumann	
	Algebras	100
	1.5. The Decomposition of Unitary Representations	103
§2.	Group Algebras of Locally Compact Groups	105
Ŭ	2.1. Integration on Groups and Homogeneous Spaces	105
	2.2. The Algebras $L_1(G)$ and $C^*(G)$	107
	2.3. Unitary Induction	109
§3.	Duality Theory	112
-	3.1. Topology on the Set of Irreducible Unitary	
	Representations	112
	3.2. Abstract Plancherel Theorem	113
	3.3. Ring Groups and the Duality	114

§4.	The Theory of Characters	117
Cha	apter 7. The Method of Orbits in the Representation Theory	
§1.	Symplectic Geometry in Homogeneous Spaces	120
	1.1. Local Lie Algebras	120
-	1.2. Homogeneous Symplectic Manifolds	123
	1.3. Orbits in the Coadjoint Representation	126
§2.	Representations of Nilpotent Lie Groups	129
	2.1. The Formulation of the Basic Result	129
	2.2. Topology of \hat{G} in Terms of Orbits	134 .
	2.3. The Functors Res and Ind	136
	2.4. Computation of Characters by Orbits	137
	2.5. Infinitesimal Characters and Orbits	139
§3.	Representations of Solvable Lie Groups	140
	3.1. Exponential Groups	140
	3.2. General Solvable Groups	142
§4.	The Method of Orbits for Other Classes of Groups	146
	4.1. Semisimple Groups	146
	4.2. General Lie Groups	148
	4.3. Infinite-Dimensional Lie Groups	149
	4.4. Representations of Lie Supergroups and Lie Superalgebras	150
Cor	nments on the References	150
Ref	erences	151
	· · ·	

4