MODELING AND CONTROL OF ENGINES AND DRIVELINES

Lars Eriksson and Lars Nielsen

Linköping University, Sweden

. . .

WILEY

Contents

Preface	xvii
Series Preface	xix
4	

Part I VEHICLE – PROPULSION FUNDAMENTALS

1	Introd	luction	3
1.1	Trends		4
	1.1.1	Energy and Environment	4
	1.1.2	Downsizing	4
	1.1.3	Hybridization	6
	1.1.4	Driver Support Systems and Optimal Driving	6
	1.1.5	Engineering Challenges	8
1.2	Vehicle	e Propulsion	8
	1.2.1	Control Enabling Optimal Operation of Powertrains	9
	1.2.2	Importance of Powertrain Modeling and Models	10
	1.2.3	Sustainability of Model Knowledge	11
1.3	Organi	ization of the Book	11
2	Vehicl	e	15
2.1	Vehicle	e Propulsion Dynamics	15
2.2	Drivin	gResistance	16
	2.2.1	Aerodynamic Drag	17
	2.2.2	Cooling Drag and Active Air-Shutters	18
	2.2.3	Air Drag When Platooning	19
	2.2.4	Rolling Resistance – Physical Background	20
	2.2.5	Rolling Resistance-Modeling	21
	2.2.6	Wheel Slip (Skid)	24
	2.2.7	Rolling Resistance – Including Thermal Modeling	25
	2.2.8	Gravitation	27
	2.2.9	Relative Size of Components	28
2.3	Drivin	g Resistance Models	28
	2.3.1	Models for Driveline Control	29
	2.3.2	Standard Driving Resistance Model	30
	2.3.3	Modeling for Mission Analysis	31
2.4	Driver	Behavior and Road Modeling	32
	2.4.1	Simple Driver Model	32
	2.4.2	Road Modeling	33

/iii		Contents	Con	tents
2.5	Mission Simulation	34		4.1.2 I
	2.5.1 Methodology	34	1	4.1.3 \$
2.6	Vehicle Characterization/Characteristics	34	4.2	Engine Ge
	2.6.1 Performance Measures	35	4.3	Engine Pe
2.7	Fuel Consumption	36		4.3.1
	2.7.1 Energy Density Weight	36		4.3.2 1
	2.7.2 From Tank to Wheel – Sankey Diagram	37		4.3.3
	2.7.3 Well-to-Wheel Comparisons	38	4.4	Downsizii
2.8	Emission Regulations	39		4.4.1 .5
	2.8.1 US and EU Driving Cycles and Regulations	39		
-			5	Thermod
5	Powertrain	45	5.1	The Four-
3.1	Powertrain Architectures	45	_	5.1.1
	3.1.2 Exhaust Gas Energy Recovery	47	5.2	Thermody
	3.1.3 Hybrid Powertrains	47		5.2.1
	3.1.4 Electrification	48		5.2.2
3.2	Vehicle Propulsion Control	50		5.2.3
	3.2.1 Objectives of Vehicle Propulsion Control	50		5.2.4
	3.2.2 Implementation Framework	51	5.3	Efficiency
	3.2.3 Need for a Control Structure	52		5.3.1
3.3	Torque-Based Powertrain Control	52		5.3.2 (
	3.3.1 Propagation of Torque Demands and Torque Commands	52	\$. •	5.3.3
	3.3.2 Torque-Based Propulsion Control – Driver Interpretation	54	5.4	Models fo
	3.3.3 Torque-Based Propulsion Control – Vehicle Demands	55	- -	5.4.1 9
	3.3.4 Torque-Based Propulsion Control – Driveline management	55		5.4.2 I
	3.3.5 Torque-Based Propulsion Control – Driveline–Engine Integration	55		5.4.3 (
	3.3.6 Handling of Torque Requests – Torque Reserve and Interventions	56		5.4.4 N
3.4	Hybrid Powertrains	58	· · ·	5.4.5 F
	3.4.1 ICE Handling	58		5.4.6 N
	3.4.2 Motor Handling	59		5.4.7 A
	3.4.3 Battery Management	59		
3.5	Outlook and Simulation	60	6	Combusti
	3.5.1 Simulation Structures	60	6.1	Mixture P
	3.5.2 Drive/Driving Cycle	60		6.1.1 H
	3.5.3 Forward Simulation	61		6.1.2 (
	3.5.4 Quasi-Static Inverse Simulation	61	6.2	SI Engine
	3.5.5 Tracking	61		6.2.1 S
	3.5.6 Inverse Dynamic Simulation	62		6.2.2 K
	3.5.7 Usage and Requirements	64		6.2.3 A
	3.5.8 Same Model Blocks Regardless of Method	65	6.3	CI Engine
				6.3.1 A
_			6.4	Engine En
Part I	I ENGINE – FUNDAMENTALS			6.4.1 G
				6.4.2 P
4	Engine – Introduction	69		6.4.3 P
	Air Fuel and Air/Fuel Ratio	69	65	Exhaust G
4.1	All, Fuel, and All/I del Rado	05	0.2	DAnual Of

 $\hat{\gamma}$

Conte	nts	i
	4.1.2 Fuels	7
	4.1.3 Stoichiometry and (A/F) Ratio	7
4.2	Engine Geometry	. 7
4.3	Engine Performance	7
	4.3.1 Power, Torque, and Mean Effective Pressure	7
	4.3.2 Efficiency and Specific Fuel Consumption	7
	4.3.3 Volumetric Efficiency	7
4.4	Downsizing and Turbocharging	7
	4.4.1 Supercharging and Turbocharging	7
5	Thermodynamics and Working Cycles	8
5.1	The Four-Stroke Cycle	8
	5.1.1 Important Engine Events in the Cycle	8
5.2	Thermodynamic Cycle Analysis	8
	5.2.1 Ideal Models of Engine Processes	8
	5.2.2 Derivation of Cycle Efficiencies	8
	5.2.3 Gas Exchange and Pumping Work	9
	5.2.4 Residual Gases and Volumetric Efficiency for Ideal Cycles	9
5.3	Efficiency of Ideal Cycles	9
	5.3.1 Load, Pumping Work, and Efficiency	9
	5.3.2 (A/F) Ratio and Efficiency	10
	5.3.3 Differences between Ideal and Real Cycles	10
5.4	Models for In-Cylinder Processes	10
	5.4.1 Single-Zone Models	10
	5.4.2 Heat Release and Mass Fraction Burned Analysis	10
	5.4.3 Characterization of Mass Fraction Burned	10
	5.4.4 More Single-Zone Model Components	11
	5.4.5 A Single-zone Cylinder Pressure Model	11
	5.4.6 Multi-zone Models	11
	5.4.7 Applications for Zero-dimensional Models	11
6	Combustion and Emissions	11
6.1	Mixture Preparation and Combustion	11
	6.1.1 Fuel Injection	11
	6.1.2 Comparing the SI and CI Combustion Process	12
6.2	SI Engine Combustion	12
	6.2.1 SI Engine Cycle-to-Cycle Variations	12
	6.2.2 Knock and Autoignition	12
	6.2.3 Autoignition and Octane Number	12
6.3	CI Engine Combustion	12
	6.3.1 Autoignition and Cetane Number	12
6.4	Engine Emissions	12
	6.4.1 General Trends for Emission Formation	12
	6.4.2 Pollutant Formation in SI Engines	13
	6.4.3 Pollutant Formation in CI Engines	13
6.5	Exhaust Gas Treatment	13

 $\begin{array}{c} 50\\ 50\\ 51\\ 52\\ 52\\ 52\\ 54\\ 55\\ 55\\ 55\\ 55\\ 56\\ 58\\ 58\\ 59\\ 60\\ 60\\ 60\\ 60\\ 60\\ 61\\ 61\\ 61\\ 61\\ 62\\ 64\\ 65\\ \end{array}$

5 dilate 7 hates G

48

69 69 69

.

ζ.		Contents	Conte	ents
	6.5.2 SI Engine Aftertreatment, TWC	139	7.13	Throttle F
	6.5.3 CI Engine Exhaust Gas Treatment	140		7.13.1
	6.5.4 Emission Reduction and Controls	142		
			8	Turbocha
			8.1	Superchar
Part I	II ENGINE – MODELING AND CONTROL		8.2	Turbocha
7	Meen Value Fraine Medeling	145		8.2.1
71	Intern value Engine Mouting	145	0	0.2.2
/.1	Eligine Sensors and Actuators	146		0.2.5
	7.1.1 Sensor, System, and Actuator Responses	140		0.2.4
	7.1.2 Engine Component Modeling	149	o 1	0.2.3 I
1.2	riow Restriction Models	147	8.3	Dimensio
	7.2.1 Incompressible Flow	1J1 154		ō.J.1 (
7 2	1.2.2 Compressible Flow	104	. O A	8.3.2 [
1.5	I protite Flow Modeling	130	8.4	Compress
- 4	1.5.1 Invotte Area and Discharge Coefficient	15/		ð.4.1
/.4	Mass Flow Into the Cylinders	159		8.4.2
	7.4.1 Models for Volumetric Efficiency	159		8.4.3
7.5	Volumes	102		8.4.4
7.6	Example – Intake Manifold		0.5	8.4.5
7.7	Fuel Path and (A/F) Ratio	168	8.5	Turbochar
	7.7.1 Fuel Pumps, Fuel Rail, Injector Feed	168	°	8.5.1
	7.7.2 Fuel Injector	169	8.6	Compress
	7.7.3 Fuel Preparation Dynamics	171		8.6.1 1
	7.7.4 Gas Transport and Mixing	174		8.6.2
	7.7.5 A/F Sensors	174		8.6.3
	7.7.6 Fuel Path Validation	178		8.6.4
	7.7.7 Catalyst and Post-Catalyst Sensor	178	<i>.</i>	8.6.5
7.8	In-Cylinder Pressure and Instantaneous Torque	180	8.7	Turbine Q
	7.8.1 Compression Asymptote	180		8.7.1
	7.8.2 Expansion Asymptote	182		8.7.2
	7.8.3 Combustion	183		8.7.3
	7.8.4 Gas Exhange and Model Compilation	184	8.8	Transient
	7.8.5 Engine Torque Generation	184	8.9	Example
7.9	Mean Value Model for Engine Torque	186	8.10	Example
	7.9.1 Gross Indicated Work	187		
	7.9.2 Pumping Work	190	9	Engine 1
	7.9.3 Engine Friction	190	9.1	Engine N
	7.9.4 Time Delays in Torque Production	192		9.1.1
	7.9.5 Crankshaft Dynamics	193		9.1.2
7.10	Engine-Out Temperature	193	9.2	Basic Fu
7.11	Heat Transfer and Exhaust Temperatures	196		9.2.1
	7.11.1 Temperature Change in a Pipe	196		9.2.2
	7.11.2 Heat Transfer Modes in Exhaust Systems	197		9.2.3
	7.11.3 Exhaust System Temperature Models	197	9.3	Calibrat
7.12	Heat Exchangers and Intercoolers	203		9.3.1 📕
		204		0.2.2

.

and the second

Contents

7.13	Throttle Plate Motion	206
	7.13.1 Model for Throttle with Throttle Servo	210
8	Turbocharging Basics and Models	211
8.1	Supercharging and Turbocharging Basics	211
8.2	Turbocharging Basic Principles and Performance	214
	8.2.1 Turbochargers in Mean Value Engine Models	214
-	8.2.2 First Law Analysis of Compressor Performance	216
	8.2.3 First Law Analysis of Turbine Performance	218
	8.2.4 Connecting the Turbine and Compressor	219
	8.2.5 Intake Air Density Increase	219
8.3	Dimensional Analysis	220
	8.3.1 Compressible Fluid Analysis	221
	8.3.2 Model Structure with Corrected Quantities	223
8.4	Compressor and Turbine Performance Maps	223
	8.4.1 The Basic Compressor Map	223
	8.4.2 The Basic Turbine Map	225
	8.4.3 Measurement Procedures for determining Turbo Maps	226
	8.4.4 Turbo Performance Calculation Details	227
	8.4.5 Heat Transfer and Turbine Efficiency	230
8.5	Turbocharger Models and Parametrizations	232
•	8.5.1 Map Interpolation Models	232
8.6	Compressor Operation and Modeling	232
	8.6.1 Physical Modeling of a Compressor	233
	8.6.2 Compressor Efficiency Models	237
	8.6.3 Compressor Flow Models	239
	8.6.4 Compressor Choke	241
	8.6.5 Compressor Surge	244
8.7	Turbine Operation and Modeling	249
	8.7.1 Turbine Mass Flow	249
	8.7.2 Turbine Efficiency	252
	8.7.3 Variable Geometry Turbine	253
8.8	Transient Response and Turbo Lag	254
8.9	Example – Turbocharged SI Engine	255
8.10	Example – Turbocharged Diesel Engine	257
9	Engine Management Systems – An Introduction	263
9.1	Engine Management System (EMS)	263
	9.1.1 EMS Building Blocks	264
	9.1.2 System for Crank and Time-Based Events	265
9.2	Basic Functionality and Software Structure	266
	9.2.1 Torque Based Structure	266
	9.2.2 Special Modes and Events	267
	9.2.3 Automatic Code Generation and Information Exchange	267
9.3	Calibration and Parameter Representation	267
	9.3.1 Engine Maps	268
	9.3.2 Model-Based Development	270

ì

xi

xii	、 	Contents		Conter	its
10	Basic Control of SF Engines	271			11.5.1 Ex
10 1	Three Basic SI Engine Controllers	272			11.5.2 EG
10.1	10.1.1 Production System Frample	272		11.6	Case Study:
	10.1.2 Rasic Control Using Mans	273			11.6.1 Co
	10.1.3 Torque Air Charge and Pressure Control	275			11.6.2 Sys
	10.1.4 Pressure Set Point from Simple Torque Model	275	1		11.6.3 Co
	10.1.5 Set Points from Full Torque Model	276			11.6.4 PI
	10.1.6 Pressure Control	270			11.6.5 Ev
10.2	Throttle Servo	279	0 2		11.6.6 Sui
10.2	10.2.1 Throttle Control Based on Exact Linearization	280		11.7	Diesel After
10.3	Fuel Management and A Control	282			_
10.5	10.3.1 Feedforward and Feedback & Control Structure	283		12	Engine-So
	10.3.2 Feedforward & Control with Rasic Fuel Metering	283		12.1	Variable Val
	10.3.2 Foodback & Control with Dusic Fuel metering	284			12.1.1 Va
	10.3.4 Fuel Dynamics and Injector Compensation	289			12.1.2 Eff
	10.3.5 Observer Rased λ Control and Adaption	290			12.1.3 Ot
	10.3.6 Dual and Triple Sensor & Control	290			12.1.4 VV
04	Other Factors that Influence 1 Control	293			12.1.5 A
10,4	10.4.1 Full Load Enrichment	295		12.2	Variable Co
	10.4.1 Full Load Enterment 10.4.2 Engine Oversneed and Overrun	295			12.2.1 Ex
	10.4.2 Engine Overspeed and Overrun	296	1		12.2.2 Ac
	10.4.5 Support Systems that Influence Air and Fuel Calculation	290		12.3	Signal Inter
	10.4.4 Cold Start Enrichment	298	°.		12.3.1 Io
10.5	10.4.5 Individual Cylinder X-control	298			12.3.2 Es
10.5	Ignition Control	299			12.3.3 C
	10.5.1 Knock Control – Feedback Control	304			
	10.5.2 Ignilion Energy – Dwell Time Control	305		D 11	
106	10.5.5 Long-term lorque, snort-term lorque, una lorque Reserve	305		Part	V DRIVE
10.0	Tarry Monogement and Idle Speed Control	300		10	D · · · ·
10.7	Torque Management and Idle Speed Control	307		13	Driveline I
10.0	10.8.1 Computers on Anti surge Control	308		13.1	Driveline
	10.8.1 Compressor Anti-surge Control	300		13.2	Motivation
	10.8.2 Boost Pressure Control	210			13.2.1 P
	10.8.5 Boost Pressure Control with Gain Scheduling	312			13.2.2 D
10.0	10.8.4 Iurbo and Knock Control	314			13.2.3 P
10.9	Dependability and Graceful Degradation	515		10.0	13.2.4 A
11	Pasis Control of Dissel Engines	217	K	13.3	Behavior w
11 1	Dasic Control of Diesel Engines	317 217			13.3.1 V
11.1	Uverview of Dieser Engine Operation and Control	218			15.5.2 T
	11.1.1 Diesel Engine Emission Irade-Ojj 11.1.2 Diesel Engine Conformation and Parisa	210		10.4	13.3.3 (
11.0	11.1.2 Diesei Engine Conjiguration and Basics	217		13.4	Approach
11.2	Dasic forque Control	320			13.4.1 T
11.2	11.2.1 recajorwara ruci Control	322			13.4.2 N
11.3	Additional Torque Controllers	322			
11.4		. 523		14	Driveline
	11.4.1 Control signal – Multiple Fuel Injections	324		14.1	General M
	11.4.2 Control Strategies for Fuel Injection	320			14.1.1 0
11.5	Control of Gas Flows	527			14.1.2 🧲

. -,

1) - T. J. HUM, D. HUM, UNIT, UNIT, D. LUM, N. MANDALI, P. LANDAR,

Co	nt	~ n	+ ~
υU	uu	ĿП	ιs

.

xiii

j

	11.5.1 Exhaust Gas Recirculation (EGR)	328
	11.5.2 EGR and Variable Geometry Turbine (VGT)	329
11.6	Case Study: EGR and VGT Control and Tuning	332
	11.6.1 Control Objectives	333
	11.6.2 System Properties that Guide the Control Design	334
	11.6.3 Control Structure	336
	11.6.4 PID Parameterization, Implementation, and Tuning	340
	11.6.5 Evaluation on European Transient Cycle	343
	11.6.6 Summing up the EGR VGT Case Study	346
11.7	Diesel After Treatment Control	346
12	Engine-Some Advanced Concepts	349
12.1	Variable Valve Actuation	349
	12.1.1 Valve Profiles	351
	12.1.2 Effects of Variable Valve Actuation	352
	12.1.3 Other Valve Enabled Functions	354
	12.1.4 VVA and Its Implications for Model Based Control	355
	12.1.5 A Remark on Air and Fuel Control Strategies	355
12.2	Variable Compression	356
	12.2.1 Example – The SAAB Variable Compression Engine	357
	12.2.2 Additional Controls	358
12.3	Signal Interpretation and Feedback Control	361
	12.3.1 Ion-sense	361
	12.3.2 Example – Ion-sense Ignition Feedback Control	365
	12.5.5 Concluding Remarks and Examples of Signal Processing	309
Part	IV DRIVELINE – MODELING AND CONTROL	
13	Driveline Introduction	373
13.1	Driveline	373
13,2	Motivations for Driveline Modeling and Control	373
	13.2.1 Principal Objectives and Variables	374
	13.2.2 Driveline Control vs. Longitudinal Vehicle Propulsion Control	375
	13.2.3 Physical Background	375
10.0	13.2.4 Application-driven Background	375
13.3	Behavior without Appropriate Control	376
	13.3.1 Vehicle Shuffle, Vehicle Surge	~ 376
	13.3.2 Traversing Backlash-shunt and Shuffle	377
	13.3.3 Oscillations After Gear Disengagement	377
13.4	Approach	380
	13.4.1 Timescales	380
	13.4.2 Modeling and Control	380
14	Driveline Modeling	381
14.1	General Modeling Methodology	381
	14.1.1 Graphical Scheme of a Driveline	382
	14.1.2 General Driveline Equations	382

		Contents		Conte	nts
4.2	A Basic Complete Model – A Rigid Driveline	384			15.3.2 Fo
	14.2.1 Combining the Equations	385			15.3.3 Sp
	14.2.2 Reflected Mass and Inertias	386			15.3.4 Inj
4.3	Driveline Surge	386			15.3.5 La
	14.3.1 Experiments for Driveline Modeling	386			15.3.6 Ev
	14.3.2 Model with Driveshaft Flexibility	387			15.3.7 De
4.4	Additional Driveline Dynamics	391			15.3.8 Ex
	14.4.1 Influence on Parameter Estimation	391			15.3.9 Ex
	14.4.2 Character of Deviation in Validation Data	392	•	15.4	Control of I
	14.4.3 Influence from Propeller-shaft Flexibility	393			15.4.1 Pi
	14.4.4 Parameter Estimation with Springs in Series	394			15.4.2 De
	14.4.5 Sensor Dynamics	395			15.4.3 Ap
4.5	Clutch Influence and Backlash in General	396		15.5	Transmissio
	14.5.1 Model with Flexible Clutch and Driveshaft	396			15.5.1 M
	14.5.2 Nonlinear Clutch and Driveshaft Flexibility	400			15.5.2 Tr
	1453 Backlash in General	403			15.5.3 G
46	Modeling of Neutral Gear and Open Clutch	404			15.5.4 Fi
4.0	1461 Experiments	404			15.5.5 R
	14.6.2 A Decoupled Model	405			15.5.6 Va
17	Clutch Modeling	406		15.6	Driveshaft
4./	14.7.1 Chutch Modes	409		1010	1561 R
10	Torque Converter	402			15.6.1 K
4.0	Concluding Demostre on Modeling	411	0		15.6.2 0
4.9	Land Land Land Madela	411			15.0.5 U
	14.9.1 A Set of Models	411			15.0.4 P
	14.9.2 Model Support	411			15.0.5 V
	14.9.5 Control Design and valiabiling simulations	412		15 7	Poopitula
Ē	Defaulting Control	412		15.7	1571 C
.)	Drivenne Control	415		,	15.7.1 U
5.1	Characteristics of Driveline Control	414			15.7.2 V
	15.1.1 Inclusion in Torque-Based Powertrain Control	414			15.7.5 F
	15.1.2 Consequence of Sensor Locations	415			15.7.4 V
	15.1.3 Torque Actuation	415			15.7.5 E
	15.1.4 Transmissions	416			15.7.0 E
	15.1.5 Engine as Torque Actuator	417			=
	15.1.6 Control Approaches	418		Part V	V DIAGN
5.2	Basics of Driveline Control	419			
	15.2.1 State-Space Formulation of the Driveshaft Model	419		16	Diagnosis
	15.2.2 Disturbance Description	420		16.1	Dependab
	15.2.3 Measurement Description	420			16.1.1
	15.2.4 Performance Output	420			16.1.2
	15.2.5 Control Objective	421			16.1.3
	15.2.6 Controller Structures	421			16.1.4
	15.2.7 Notation for Transfer Functions	422			16.1.5
	15.2.8 Some Characteristic Feedback Properties	422			16.1.6
			12-12-		
	15.2.9 Insight from Simplified Transfer Functions	425		16.2	Basic De
5.3	15.2.9 Insight from Simplified Transfer Functions Driveline Speed Control	425 427		16.2	Basic De

	15.3.2	Formulating the Objective of Anti-Surge Control	
	15.3.3	Speed Control with Active Damping and ROV Behavior	
	15.3.4	Influence from Sensor Location	-
	15. <u>3</u> .5	Load Estimation	
	15.3.6	Evaluation of the Anti-Surge Controller	
	15.3.7	Demonstrating Rejection of Load Disturbance	
	15.3.8	Experimental Verification of Anti-Surge Control	
	15.3.9	Experiment Eliminating a Misconception	
15.4	Control	of Driveline Torques	
	15.4.1	Purpose of Driveline Torque Control for Gear Shifting	
	15.4.2	Demonstration of Potential Problems in Torque Control	
	15.4.3	Approaches to Driveline Torque Control for Gear Shifting	
15.5	Transmi	ission Torque Control	
	15.5.1	Modeling of Transmission Torque	
	15.5.2	Transmission-Torque Control Criterion	
	15.5.3	Gear-shift Condition	
	15.5.4	Final Control Criterion	
	15.5.5	Resulting Behavior–Feasible Active Damping	
	15.5.6	Validating Simulations and Sensor Location Influence	
15.6	Drivesh	aft Torsion Control	
	15.6.1	Recalling Damping Control with PID	
	15.6.2	Controller Structure	-
	15.6.3	Observer for Driveshaft Torsion	
	15.6.4	Field Trials for Controller Validation	
	15.6.5	Validation of Gear Shift Quality	
	15.6.6	Handling of Initial Driveline Oscillations	
15.7	Recapiti	ulation and Concluding Remarks	
	15.7.1	General Methodology	
	15.7.2	Valuable Insights	
	15.7.3	Formulation of Control Criterion	
	15.7.4	Validation of Functionality	
	15.7.5	Experimental Verification of Torque Limit Handling	
	15.7.6	Benefits	

Ĭ,

it in the

16	Diagnosis and Dependability		473
16.1	Dependability		474
	16.1.1	Functional Safety-Unintended Torque	474
	16.1.2	Functional Safety Standards	476
	16.1.3	Controller Qualification/Conditions/Prerequisites	477
	16.1.4	Accommodation of Fault Situations	478
	16.1.5	Outlook	478
	16.1.6	Connections	479
16.2	Basic Definitions and Concepts		479
	16.2.1	Fault and Failure	480
	16.2.2	Detection, Isolation, Identification, and Diagnosis	481

xvi

	16.2.3	False Alarm and Missed Detection	481	
	16.2.4	Passive or Active (Intrusive)	482	
	16.2.5	Off-Line or On-Line (On-Board)	482	
16.3	Introdu	cing Methodology	482	
	16.3.1	A Simple Sensor Fault	482	
	16.3.2	A Simple Actuator Fault	483	
	16.3.3	Triple Sensor Redundancy	483	
	16.3.4	Triple Redundancy Using Virtual Sensors	485	
	16.3.5	Redundancy and Model-Based Diagnosis	486	
	16.3.6	Forming a Decision–Residual Evaluation	488	
	16.3.7	Leakage in a Turbo Engine	491	
16.4	Engine	ering of Diagnosis Systems	494	
16.5	Selecte	d Automotive Applications	494	
	16.5.1	Catalyst and Lambda Sensors	495	
	16.5.2	Throttle Supervision	496	
	16.5.3	Evaporative System Monitoring	497	
	16.5.4	Misfire	501	
	16.5.5	Air Intake	507	
	16.5.6	Diesel Engine Model	517	
16.6	History	, Legislation, and OBD	520	
	16.6.1	Diagnosis of Automotive Engines	520	
16.7	Legisla	tion	521	
	16.7.1	OBDII	521	
	16.7.2	Examples of OBDII Legislation Texts	523	
Α	Therm	odynamic Data and Heat Transfer Formulas	527	
A.1	Thermo	odynamic Data and Some Constants	527	
A.2	Fuel D	ata	528	
A.3	Dimen	sionless Numbers	528	
A.4	Heat T	529		
	A.4.1	Conduction	535	
	A.4.2	Convection	536	
	A.4.3	Radiation	537	
	A.4.4	Resistor Analogy	537	
	A.4.5	Solution to Fourth-order Equations	539	
Refe	ences	541		
Index				

Preface

Contents

This book provides and drivelines. Mod and there are appror lation or for design of mechanics and fi neering and control of overall design of industry has given a when developing an

We have three ma component models, been important for and treatment of dif eling considerations shows how models timeless; but as a se and important, contra to illustrate control between conflicting course never used in systems integration vehicle models in lo consumption analys

As mentioned abo ticing engineers ben Electrical and Mech versity since 1998. tailored courses for Green Car program IFP School in Paris Besides these audie work within the aut models here are an i nization and betwee The text is writte

general engineering matic control or sig