Contents

CHAPTER 1. Basic Model of Sampling from a Population with Identifiable Units

1.1 Fixed Population Approach versus Superpopulation Approach 1
1.2 The Basic Model 3
1.3 Sampling Designs: General Properties 8
1.4 Some Specific Sampling Designs 12
1.5 Data and Estimators 17
1.6 Specific Estimators and Unbiasedness 22
1.7 Some Reflections on the Basic Model 27
1.8 List of Notation 29

CHAPTER 2. Inference under the Fixed Population Model: The Concepts of Sufficiency and Likelihood 32

2.1 The Inference Problem 33
2.2 Sufficiency 35
2.3 Rao—Blackwellization 39
2.4 The Likelihood Function 44

CHAPTER 3. Inference under the Fixed Population Model: Criteria for Judging Estimators and Strategies 52

3.1 Admissibility of Estimators 52
3.2 Admissibility of Strategies 59
3.3 Hyperadmissibility 63
3.4 Uniformly Minimum Variance: Nonexistence Theorems 68
CONTENTS

3.5 Uniformly Minimum Variance: Existence Theorems under Restricted Conditions 71
3.6 Minimax Estimators and Strategies 76
3.7 Invariant Estimators 78

CHAPTER 4. Inference under Superpopulation Models: Design-Unbiased Estimation 80
4.1 The Superpopulation Concept 80
4.2 A Survey of Superpopulation Models 82
4.3 Some Terminology 90
4.4 Optimal Design-Unbiased Strategies: Model G_T 94
4.5 Optimal Design-Unbiased Strategies: Model E_T 101

CHAPTER 5. Inference under Superpopulation Models: Prediction Approach using Tools of Classical Inference 108
5.1 Predicting the Population Mean 108
5.2 Some Results on Optimal ξ-Unbiased Prediction 112
5.3 Prediction without Auxiliary Variable Information 115
5.4 Prediction using Auxiliary Information: Model G_R 119
5.5 Judging the Uncertainty of the Estimates 124
5.6 Prediction using Auxiliary Information: Model G_{MR} 126
5.7 A Summary of Results on the Sample Mean 129

CHAPTER 6. Inference under Superpopulation Models: Using Tools of Bayesian Inference 133
6.1 Basic Theory in the Bayesian Approach 133
6.2 Bayesian Inference when θ Is Known 135
6.3 Bayesian Inference when θ Is Unknown 138
6.4 Examples of Bayesian Inference under Normal Priors 140

CHAPTER 7. Efficiency Robust Estimation of the Finite Population Mean 148
7.1 The Purpose of Robustness Studies in Survey Sampling 148
7.2 Uses of Auxiliary Information in Design-Oriented Estimation 149
7.3 Mean-of-the-Ratios Strategies and Ratio Strategies 152
CONTENTS

7.4 Comparisons among M- and R-Strategies, Theoretical Approaches 157
7.5 Comparisons among M-Strategies, Semitheoretical and Empirical Approaches 163
7.6 Comparisons Based on the Gamma(r) Approximation 167
7.7 Robustness Problems in Model-Based Inference 173

References 179

Index 187