Optical Electronics in Modern Communications

Fifth Edition

Amnon Yariv

California Institute of Technology

Physikalische Bibliothek Fachbereich 5 Technische Universität Darmstadt Hochschulstraße 4 D-64289 Darmstadt

pb 2809

New York Oxford Oxford University Press 1997

Contents

Chapter 1

ELECTROMAGNETIC THEORY 1

1.0	Introduction 1
1.1	Complex-Function Formalism 1
	Time-Averaging of Sinusoidal Products 3
1.2	Considerations of Energy and Power in Electromagnetic Fields 3
	Dipolar Dissipation in Harmonic Fields 5
1.3	Wave Propagation in Isotropic Media 7
	Power Flow in Harmonic Fields 10
1.4	Wave Propagation in Crystals—The Index Ellipsoid 12
	Birefringence 13
	Index Ellipsoid 14
	Normal (index) Surfaces 17
1.5	Jones Calculus and Its Application to Propagation in Optical Systems with
	Birefringent Crystals 17
	Intensity Transmission 24
	Circular Polarization Representation 26
	Faraday Rotation 27
1.6	Diffraction of Electromagnetic Waves 30
	PROBLEMS 34
	REFERENCES 38

۰.

Chapter 2	THE PROPAGATION OF RAYS AND BEAMS 39
2.0	Introduction 39
2.1	Lens Waveguide 39
	Identical-Lens Waveguide 44
2.2	Propagation of Rays Between Mirrors 45
	Reentrant Rays 45
2.3	Rays in Lenslike Media 46
2.4	Wave Equation in Quadratic Index Media 48
2.5	Gaussian Beams in a Homogeneous Medium 50
2.6	Fundamental Gaussian Beam in a Lenslike Medium—The ABCD Law 53
	Transformation of the Gaussian Beam—The ABCD Law 54
2.7	A Gaussian Beam in Lens Waveguide 57
2.8	High-Order Gaussian Beam Modes in a Homogeneous Medium 57
2.9	High-Order Gaussian Beam Modes in Quadratic Index Media58
	Pulse Spreading in Quadratic Index Glass Fibers 63
2.10	Propagation in Media with a Quadratic Gain Profile 65
2.11	Elliptic Gaussian Beams 66
0.10	Elliptic Gaussian Beams in a Quadratic Lenslike Medium 69
2.12	Diffraction Integral for a Generalized Paraxial A,B,C,D System 70
	PROBLEMS 72
	REFERENCES 74
Chapter 3	PROPAGATION OF OPTICAL BEAMS IN FIBERS 76
3.0	Introduction 76
3.1	Wave Equations in Cylindrical Coordinates 77
3.2	The Step-Index Circular Waveguide 80
	Mode Characteristics and Cutoff Conditions 83
3.3	Linearly Polarized Modes 89
	Power Flow and Power Density 96
3.4	Optical Pulse Propagation and Pulse Spreading in Fibers 98 Frequency Chirp 105
3.5	Compensation for Group Velocity Dispersion 106
	Compensation for Pulse Broadening by Fibers with Opposite Dispersion 108
	Compensation for Pulse Broadening by Phase Conjugation 108
3.6	Analogy of Spatial Diffraction and Temporal Dispersion 113
3.7	Attenuation in Silica Fibers 115
	PROBLEMS 116
	REFERENCES 119
Chapter 4	OPTICAL RESONATORS 121

4.0 Introduction 121 Mode Density in Optical Resonators

122

4.1	Fabry-Perot Etalon 125
4.2	Fabry-Perot Etalons as Optical Spectrum Analyzers 129
4.3	Optical Resonators with Spherical Mirrors 132
	Optical Resonator Algebra 133
	The Symmetrical Mirror Resonator 134
4.4	Mode Stability Criteria 135
4.5	Modes in a Generalized Resonator—The Self-Consistent Method 138
	Stability of the Resonator Modes 139
4.6	Resonance Frequencies of Optical Resonators 140
4.7	Losses in Optical Resonators 143
4.8	Optical Resonators—Diffraction Theory Approach 145 Equivalent Resonator Systems 149
4.9	Mode Coupling154Equivalent Resonator Systems149Mode Solution by Numerical Iteration151PROBLEMS156REFERENCES158
Chapter 5	INTERACTION OF RADIATION AND ATOMIC SYSTEMS 159
5.0	Introduction 159
5.1	Spontaneous Transitions Between Atomic Levels—Homogeneous and Inhomogeneous Broadening159The Concept of Spontaneous Emission160
	Lineshape Function—Homogeneous and Inhomogeneous
	Broadening 161
	Homogeneous and Inhomogeneous Broadening 162
5.2	Induced Transitions 165
5.3	Absorption and Amplification 168
5.4	Derivation of $\chi'(\nu)$ 171 The Significance of $\chi(\nu)$ 174
5.6	Gain Saturation in Homogeneous Laser Media 176
5.7	Gain Saturation in Inhomogeneous Laser Media 179
5.7	PROBLEMS 182
	REFERENCES 183
Chapter 6	THEORY OF LASER OSCILLATION AND ITS CONTROL IN THE CONTINUOUS
	AND PULSED REGIMES 185
6.0	Introduction 185
6.1	Fabry-Perot Laser 185
6.2	Oscillation Frequency 189
6.3	Three- and Four-Level Lasers 192
6.4	Power in Laser Oscillators 194 Rate Equations 194
6.5	Optimum Output Coupling in Laser Oscillators 197
6.6	Multimode Laser Oscillation and Mode Locking201Mode Locking203

xi

		Methods of Mode Locking 206
		Theory of Mode Locking 210
	6.7	Mode Locking in Homogeneously Broadened Laser Systems 212
		Transfer Function of the Gain Medium 213
		Transfer Function of the Loss Cell 213
		Mode Locking by Phase Modulation 217
	6.8	Pulse Length Measurement and Narrowing of Chirped Pulses 218
		Pulse Narrowing by Chirping and Compression 222
		The Grating Pair Compressor 226
	6.9	Giant Pulse (Q-switched) Lasers 227
		Methods of Q -Switching 233
	6.10	Hole-Burning and the Lamb Dip in Doppler-Broadened Gas Lasers 235
		PROBLEMS 238
		REFERENCES 239
		v
	_	
Chapter 7	,	SOME SPECIFIC LASER SYSTEMS 242
Chapter 7	7.0	SOME SPECIFIC LASER SYSTEMS242Introduction242
Chapter 7		Introduction 242
Chapter 7	7.0	Introduction 242
Chapter 7	7.0 7.1	Introduction 242 Pumping and Laser Efficiency 242
Chapter 7	7.0 7.1 7.2	Introduction242Pumping and Laser Efficiency242Ruby Laser243
Chapter 7	7.0 7.1 7.2 7.3	Introduction 242 Pumping and Laser Efficiency 242 Ruby Laser 243 Nd ³⁺ :YAG Laser 248
Chapter 7	7.0 7.1 7.2 7.3 7.4	Introduction242Pumping and Laser Efficiency242Ruby Laser243Nd ³⁺ :YAG Laser248Neodymium-Glass Laser251
Chapter 7	7.0 7.1 7.2 7.3 7.4 7.5	Introduction 242 Pumping and Laser Efficiency 242 Ruby Laser 243 Nd ³⁺ :YAG Laser 248 Neodymium-Glass Laser 251 He-Ne Laser 255
Chapter 7	7.0 7.1 7.2 7.3 7.4 7.5 7.6	Introduction 242 Pumping and Laser Efficiency 242 Ruby Laser 243 Nd ³⁺ :YAG Laser 248 Neodymium-Glass Laser 251 He-Ne Laser 255 Carbon Dioxide Laser 257 Ar ⁺ Laser 259 Excimer Lasers 260
Chapter 7	7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	Introduction 242 Pumping and Laser Efficiency 242 Ruby Laser 243 Nd ³⁺ :YAG Laser 248 Neodymium-Glass Laser 251 He-Ne Laser 255 Carbon Dioxide Laser 257 Ar ⁺ Laser 259 Excimer Lasers 260 Organic-Dye Lasers 262
Chapter 7	7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10	Introduction 242 Pumping and Laser Efficiency 242 Ruby Laser 243 Nd ³⁺ :YAG Laser 248 Neodymium-Glass Laser 251 He-Ne Laser 255 Carbon Dioxide Laser 257 Ar ⁺ Laser 259 Excimer Lasers 260 Organic-Dye Lasers 262 High-Pressure Operation of Gas Lasers 267
Chapter 7	7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	Introduction 242 Pumping and Laser Efficiency 242 Ruby Laser 243 Nd ³⁺ :YAG Laser 248 Neodymium-Glass Laser 251 He-Ne Laser 255 Carbon Dioxide Laser 257 Ar ⁺ Laser 259 Excimer Lasers 260 Organic-Dye Lasers 262
Chapter 7	7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10	Introduction 242 Pumping and Laser Efficiency 242 Ruby Laser 243 Nd ³⁺ :YAG Laser 248 Neodymium-Glass Laser 251 He-Ne Laser 255 Carbon Dioxide Laser 257 Ar ⁺ Laser 259 Excimer Lasers 260 Organic-Dye Lasers 262 High-Pressure Operation of Gas Lasers 267 The <i>Er</i> -Silica Laser 270 PROBLEMS 270
Chapter 7	7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10	Introduction 242 Pumping and Laser Efficiency 242 Ruby Laser 243 Nd ³⁺ :YAG Laser 248 Neodymium-Glass Laser 251 He-Ne Laser 255 Carbon Dioxide Laser 257 Ar ⁺ Laser 259 Excimer Lasers 260 Organic-Dye Lasers 262 High-Pressure Operation of Gas Lasers 267 The <i>Er</i> -Silica Laser 270
Chapter 7	7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10	Introduction 242 Pumping and Laser Efficiency 242 Ruby Laser 243 Nd ³⁺ :YAG Laser 248 Neodymium-Glass Laser 251 He-Ne Laser 255 Carbon Dioxide Laser 257 Ar ⁺ Laser 259 Excimer Lasers 260 Organic-Dye Lasers 262 High-Pressure Operation of Gas Lasers 267 The <i>Er</i> -Silica Laser 270 PROBLEMS 270

Chapter 8 SECOND-HARMONIC GENERATION AND PARAMETRIC OSCILLATION 273

- 8.0 Introduction 273
- 8.1 On the Physical Origin of Nonlinear Polarization 273
- 8.2 Formalism of Wave Propagation in Nonlinear Media 282
- 8.3 Optical Second-Harmonic Generation 285

 Phase-Matching in Second-Harmonic Generation 286
 Experimental Verification of Phase-Matching 290
 Second-Harmonic Generation with Focused Gaussian Beams 291
 Second-Harmonic Generation with a Depleted Input 293
- 8.4 Second-Harmonic Generation Inside the Laser Resonator 295

	8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12	Photon Model of Second-Harmonic Generation299Parametric Amplification300Phase-Matching in Parametric Amplification306Parametric Oscillation308Frequency Tuning in Parametric Oscillation311Power Output and Pump Saturation in Optical ParametricOscillators314Frequency Up-Conversion316Quasi Phase-Matching319Quasi Phase-Matching in Crystal Dielectric Waveguides320PROBLEMS322REFERENCES323
Chapter 9		ELECTROOPTIC MODULATION OF LASER BEAMS 326
	9.0	Introduction 326
	9.1	Electrooptic Effect 326
		The General Solution 333
	9.2	Electrooptic Retardation 341
	9.3	Electrooptic Amplitude Modulation 344
	9.4	Phase Modulation of Light 347
	9.5	Transverse Electrooptic Modulators 348
	9.6	High-Frequency Modulation Considerations 349 Transit-Time Limitations to High-Frequency Electrooptic Modulation 350 Traveling-Wave Modulators 351 Electropy 253
	9.7	Electrooptic Beam Deflection 353
	9.8	Electrooptic Modulation—Coupled Wave Analysis 356 The Wave Equation 358
	9.9	Phase Modulation360Amplitude Modulation (advanced topic)364PROBLEMS367REFERENCES370
Chapter 1	0	NOISE IN OPTICAL DETECTION AND GENERATION 372
	10.0	Introduction 372
	10.0	Limitations Due to Noise Power 373
		Measurement of Optical Power 373
	10.2	Noise—Basic Definitions and Theorems 376 Wiener-Khintchine Theorem 378
	10.3	The Spectral Density Function of a Train of Randomly Occurring Events 379
	10.4	Shot Noise 381
	10.7	

10.5 Johnson Noise 383 Statistical Derivation of Johnson Noise 386 XIII

10. 10. 10. 10.	 7 Phasor Derivation of the Laser Linewidth 393 The Phase Noise 393 The Laser Field Spectrum 396 8 Coherence and Interference 401 Delayed Self-Heterodyning of Laser Fields 404 Special Case t_d≫τ_c 406
	REFERENCES 411
Chapter 11	DETECTION OF OPTICAL RADIATION 413
11.) Introduction 413
11.	
11.	• •
11.	
	Mimimum Detectable Power in Photomultipliers—Video Detection 418 Signal-Limited Shot Noise 420
11.	 Heterodyne Detection with Photomultipliers 421 Limiting Sensitivity as a Result of the Particle Nature of Light 423
11.	 5 Photoconductive Detectors 425 Generation Recombination Noise in Photoconductive Detectors 428 Heterodyne Detection in Photoconductors 430
11.	6 The <i>p</i> - <i>n</i> Junction 432
11.	7 Semiconductor Photodiodes 436
	Frequency Response of Photodiodes438Detection Sensitivity of Photodiodes443
11.	8 The Avalanche Photodiode 446
11.	
11.	10 Infrared Imaging and Background-Limited Detection 454
11.	11 Optical Amplification in Fiber Links 461 PROBLEMS 470
	REFERENCES 471
Chapter 12	INTERACTION OF LIGHT AND SOUND 474
12.	0 Introduction 474
12.	
	Desting of Light by Sound 474

12.2 Particle Picture of Bragg Diffraction of Light by Sound 477 Doppler Derivation of the Frequency Shift 478

- 12.3 Bragg Diffraction of Light by Acoustic Waves—Analysis 479
- 12.4 Deflection of Light by Sound 486 PROBLEMS 489 REFERENCES 490

Chapter 13 PROPAGATION AND COUPLING OF MODES IN OPTICAL DIELECTRIC WAVEGUIDES---PERIODIC WAVEGUIDES 491

- 13.0 Introduction 491
- 13.1 Waveguide Modes—A General Discussion 492
 Confined Modes in a Symmetric Slab Waveguide 494
- 13.2TE and TM Modes in an Asymmetric Slab Waveguide499TE Modes499TM Modes501
- 13.3 A Perturbation Theory of Coupled Modes in Dielectric Optical Waveguides 502
- 13.4 Periodic Waveguide 504
 Some General Properties of the Coupled Mode Equations 506
 13.5 Coupled-Mode Solutions 509
 - Numerical Example 512
- 13.6 Periodic Waveguides as Optical Filters and Reflectors—Periodic Fibers 512
- 13.7 Electrooptic Modulation and Mode Coupling in Dielectric Waveguides 515
- 13.8 Directional Coupling 521
- 13.9 The Eigenmodes of a Coupled Waveguide System (supermodes) 526
- 13.10 Láser Arrays 531 PROBLEMS 538 REFERENCES 539

Chapter 14 HOLOGRAPHY AND OPTICAL DATA STORAGE 541

- 14.0 Introduction 541
- 14.1The Mathematical Basis of Holography542The Holographic Process Viewed as Bragg Diffraction542Basic Holography Formalism545
- 14.2 The Coupled Wave Analysis of Volume Holograms 546 Multihologram Recording and Readout—Crosstalk 549 Wavelength Multiplexing 552 Crosstalk in Data-Bearing Holograms 552
 PROBLEMS 556 REFERENCES 557

Chapter 15 SEMICONDUCTOR LASERS—THEORY AND APPLICATIONS 558

- 15.0 Introduction 558
- 15.1 Some Semiconductor Physics Background 559 The Fermi-Dirac Distribution Law 562
- 15.2 Gain and Absorption in Semiconductor (laser) Media 565
- 15.3 GaAs/Ga_{1-x}Al_xAs Lasers 570
- 15.4 Some Real Laser Structures 577 Quaternary GaInAsP Semiconductor Lasers 578 Power Output of Injection Lasers 581
- 15.5 Direct-Current Modulation of Semiconductor Lasers 582
- 15.6 Gain Suppression and Frequency Chirp in Current-Modulated Semiconductor Lasers 587 Amplitude-phase coupling 592 The Field Spectrum of a Chirping Laser 594
- 15.7 Integrated Optoelectronics 596 PROBLEMS 599 REFERENCES 601

Chapter 16 ADVANCED SEMICONDUCTOR LASERS: QUANTUM WELL LASERS, DISTRIBUTED FEEDBACK LASERS, VERTICAL CAVITY SURFACE EMITTING LASERS 604

- 16.0 Introduction 604
- 16.1 Carriers in Quantum Wells (Advanced Topic) 605 The Density of States 608
- 16.2Gain in Quantum Well Lasers610Multiquantum Well Laser614
- 16.3 Distributed Feedback Lasers 616
 Oscillation Condition 619
 Gain-Coupled Distributed Feedback Lasers 626
 16.4 Mathematical Control of the Entities 6
- 16.4 Vertical Cavity Surface Emitting Semiconductor Lasers 628 The Oscillation Condition of a Vertical Cavity Laser 630 The Bragg Mirror 631 The Oscillation Frequencies 633
 PROBLEMS 636 REFERENCES 637

Chapter 17 PHASE CONJUGATE OPTICS—THEORY AND APPLICATIONS 639

- 17.0 Introduction and Background 639
- 17.1 The Distortion Correction Theorem 640
- 17.2 The Generation of Phase Conjugate Waves 641
- 17.3 The Coupled-Mode Formulation of Phase Conjugate Optics643Some Consideration of Units648

17.4	Some Experiments Involving Phase Conjugation 649
17.5	Optical Resonators with Phase Conjugate Reflectors 651
17.6	The ABCD Formalism of Phase Conjugate Optical Resonators
	The ABCD Matrix of a Phase Conjugate Mirror 653
17.7	Dynamic Distortion Correction Within a Laser Resonator 655
17.8	Holographic Analogs of Phase Conjugate Optics 657
17.9	Imaging Through a Distorted Medium 659
17.10	Image Processing by Four-Wave Mixing 661
17.11	Compensation of Fiber Dispersion 665
	PROBLEMS 665
	REFERENCES 665
6	TWO-BEAM COUPLING AND PHASE CONJUGATION IN
	PHOTOREFRACTIVE MEDIA 668
18.0	Introduction 668
18.1	Two-Wave Coupling in a Fixed Grating 669
18.2	The Photorefractive Effect—Two Beam Coupling 671
	The Grating Formation 680

Refractive Two-Beam Coupling

Applications of Photorefractive Oscillators

Rotation Sensing

691

The Wave Equation

700

701

703

703

The Uncertainty Principle

Uncertainty in Energy

The Quantum Uncertainty Goes Classical

The Energy of an Electromagnetic Mode

691

693

The Mathematical Description of Solitons

PROBLEMS

REFERENCES

Introduction

PROBLEMS REFERENCES

SQUEEZING

Introduction

OPTICAL SOLITONS

Two-Beam Coupling—Symmetric Geometry

686 Mathematical and Logic Operations of Images

693

695 Numerical Example-Optical Solitons in Silica Fibers

A CLASSICAL TREATMENT OF QUANTUM OPTICS, QUANTUM NOISE, AND

704

709

Photorefractive Self-Pumped Phase Conjugation

681

683

688

699

684

686

693

703

709

Chapter 18

Chapter 19

Chapter 20

18.3

18.4

19.0

19.1

20.0 20.1

xvii

653

.

20.2	Phase Uncertainty710Fluctuation of Photoelectron Number710Minimum Detectable Optical Power Increment711Squeezing of Optical Fields712Experimental Demonstrations of Squeezing716REFERENCES721
Appendix A	THE KRAMERS-KRONIG RELATIONS 723
Appendix B	THE ELECTROOPTIC EFFECT IN CUBIC 43m CRYSTALS 726
Appendix C	NOISE IN TRAVELING WAVE LASER AMPLIFIERS 730
Appendix D	TRANSFORMATION OF A COHERENT ELECTROMAGNETIC FIELD BY A THIN LENS 734
Index	737

.

.