Tunable Solid-State Lasers II

Proceedings of the OSA Topical Meeting, Rippling River Resort, Zigzag, Oregon, June 4–6, 1986

Editors: A.B. Budgor, L. Esterowitz, and L.G. DeShazer

With 285 Figures

Physikalischa Bibliothsk Fachbareich 5 Technische Hochschule Darmstadt Hochschulstraße 2 Po 6100 Dermoted?

I/3736

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

Part I	Spectroscopy	
	Spectroscopy Using Infrared Photons ure (With 2 Figures)	2
1	scopy Measurements on Tunable Solid State Laser R.C. Powell (With 8 Figures)	5
-	ourning in Titanium-Doped Sapphire and YAG farlane and W. Lenth (With 5 Figures)	14
Part II	Chromium Spectroscopy	
	tivated Crystals as Tunable Laser Media – What Special? By J.A. Caird (With 7 Figures)	20
Nd^{3+} in GSG	Nonradiative Energy Transfer Between Cr ³⁺ and G an and B. Di Bartolo (With 10 Figures)	35
	Absorption and Photoconductivity of GSGG:Cr and L.J. Andrews (With 8 Figures)	44
	nce Behaviour of Chromium-Doped Oxide Glasses s, S. Parke, and M.J. Payne	53
Part III	Crystal Growth	
	ped Garnet Hosts: Crystal Chemistry Development s. By E.V. Zharikov (With 9 Figures)	64
Crystal. By B	th of ScBO ₃ :Cr ³⁺ – A New Near-IR Tunable Laser B.H.T. Chai, M. Long, R.C. Morris, and S.T. Lai res)	76

 Growth of Laser-Quality Ti:Al ₂ O ₃ Crystals by a Seeded Gradient- Freeze Technique. By R.E. Fahey, A.J. Strauss, A. Sanchez, and R.L. Aggarwal (With 5 Figures)	82
Effects of Growth Conditions and Post-Growth Thermal Treatment on the Quality of Titanium-Doped Sapphire By M.R. Kokta (With 4 Figures)	89
Growth of Cerium-Doped Rare Earth Silicates for Tunable Lasers By R.F. Belt and J.A. Catalano (With 5 Figures)	94
Part IV Chromium Tunable Lasers	
The Chromium-Doped Rare-Earth Gallium Garnet Crystals as the Active Material for Solid-State Lasers By I.A. Shcherbakov (With 11 Figures)	104
Single-mode Operation of Cr-Doped GSGG and KZnF ₃ By P. Fuhrberg, W. Luhs, B. Struve, and G. Litfin (With 8 Figures)	113
Flashlamp-pumped Cr ³⁺ :GSAG and Cr ³⁺ :GSGG : Slope Efficiency, Resonator Design, Color Centers and Tunability By J. Drube, G. Huber, and D. Mateika (With 8 Figures)	118
Laser Action in Flashlamp-Pumped Chromium: GSG-Garnet By M.J.P. Payne and H.W. Evans (With 9 Figures)	126
Cr:YSAG – A Tunable Near-Infrared Laser Material By N.P. Barnes, D.K. Remelius, D.J. Gettemy, and M.R. Kokta (With 9 Figures)	136
A ScBO ₃ :Cr Laser. By S.T. Lai, B.H.T. Chai, M. Long, M.D. Shinn, J.A. Caird, J.E. Marion, and P.R. Staver (With 6 Figures)	145
Tunable Lasers with Transition Metal Doped Fluoride Crystals By U. Dürr and U. Brauch (With 5 Figures)	151
Laser-Pumped Laser Measurements of Gain and Loss in SrAlF ₅ :Cr Crystals. By J.A. Caird, P.R. Staver, M.D. Shinn, H.J. Guggenheim, and D. Bahnck (With 5 Figures)	159

Part V Alexandrite Lasers

-Alexandrite Laser Amplifiers. By J.A. Pete, J. Krasinski, T. Chin,	
and D.F. Heller (With 6 Figures)	166

High-Power Injection-Locked Alexandrite Ring Laser By F. de Rougemont, V. Michau, and R. Frey (With 7 Figures) .	175
Low Magnification Unstable Resonators Using Radially Varying Birefringent Elements By D.J. Harter and J.C. Walling (With 5 Figures)	183
Injection Locking Broadly Tunable, Q-Switched Alexandrite Lasers Using Semiconductor Laser Diodes. By J. Krasinski, P. Papanestor, J.A. Pete, and D.F. Heller (With 5 Figures)	191
Panel Discussion on Chromium Tunable Lasers. By J.C. Walling	196

Part VI Titanium Sapphire Lasers

Room-Temperature cw Operation of the Ti:Al ₂ O ₃ Laser By A. Sanchez, R.E. Fahey, A.J. Strauss, and R.L. Aggarwal (With 6 Figures)	202
Continuous Wave Tunable Laser Operation of Ti ³⁺ -Doped Sapphire at 300 K. By P. Albers, H.P. Jenssen, G. Huber, and M. Kokta (With 4 Figures)	208
Efficient, Tunable Ti:Sapphire Laser By W.R. Rapoport and C.P. Khattak (With 8 Figures)	212
Amplifier and Line-Narrowed Oscillator Performance of Ti:Al ₂ O ₃ By N.P. Barnes and D.K. Remelius (With 10 Figures)	218
Oscillator and Amplifier Performance of Ti:Sapphire By L.G. DeShazer, J.M. Eggleston, and K.W. Kangas (With 6 Figures)	228
Laser Performance and Temperature-Dependent Spectroscopy of Titanium-Doped Crystals. By K.L. Schepler (With 6 Figures)	235
Flashlamp-Pumped Titanium-Doped Sapphire Laser By P. Lacovara and L. Esterowitz	40
Optical and Mass Spectroscopic Analyses of Titanium-Doped Sapphire Crystals. By C.E. Byvik, A.M. Buoncristiani, S.J. McMurray, and M. Kokta (With 4 Figures)	42
Injection-Controlled Titanium-Doped Sapphire Laser Using a Pulsed Dye Laser. By C.H. Bair, P. Brockman, J.C. Barnes, R.V. Hess, and E.V. Browell (With 3 Figures)	47

Part VII Color Center Lasers

New Color Center Lasers Based on Molecule-Doped Alkali Halides By D. Wandt, W. Gellermann, F. Luty, and H. Welling (With 8 Figures)	252
Stable Color Center Laser in OH-Doped NaCl Operating in the 1.41–1.81 μ m Region By J.F. Pinto, E. Georgiou, and C.R. Pollock (With 3 Figures)	261
Recent Progress in the Development of $(F_2^+)_A$ Color Center Lasers. By D.R. Foster and I. Schneider (With 4 Figures)	266
Electric Field Modulation of a Colour Centre Laser By G. Baldacchini, U.M. Grassano, M. Meucci, P. Minguzzi, and M. Tonelli (With 4 Figures)	271
Synthetic Diamond for Color Center Lasers By S.C. Rand (With 2 Figures)	276

Part VIII Rare Earth Lasers

Part IX	Neodymium Lasers	
By M. Bass,	the High Dopant Density Er:YAG at 2.94 μ m W.Q. Shi, R. Kurtz, M. Kokta, and H. Diegl res)	300
Yttrium-Scan	ion on the Erbium and Holmium Transitions in the adium-Gallium Garnet Crystals erbakov (With 6 Figures)	293
R. Allen, L. C	Diode-Pumped 2 µm Holmium Laser. By L. Esterowitz, R. Allen, L. Goldberg, J.F. Weller, M. Storm, and I. Abella With 2 Figures)	
By E.W. Due	of Cr, Nd, Tm, Ho-Doped Garnets zynski, G. Huber, and P. Mitzscherlich ures)	282

The YAlO ₃ :Er Laser By H.P. Weber and W. Lüthy (With 8 Figures)	308
Comparative Performance of Nd-Doped Solid-State Laser Materials. By T. Driscoll, G. Hansen, R. Stone, M. Peressini, and H. Hoffman (With 4 Figures)	317

х

CW Tunable Laser Emission of Nd ³⁺ :Na _{0.4} Y _{0.6} F _{2.2} By H. Chou, P. Albers, A. Cassanho, and H.P. Jenssen (With 8 Figures)	322
Monomode Neodymium-Doped Fibre Laser: Tunable Continuous- Wave Oscillation at 0.9 μ m. By I.P. Alcock, A.I. Ferguson, D.C. Hanna, and A.C. Tropper (With 2 Figures)	328
Nonradiative Processes and Blue Emission in Nd:YLF By T.Y. Fan and R.L. Byer (With 3 Figures)	331

Part X Applications and Nonlinear Optics

.

Future Lidar Platforms in Space By L.V. Taylor and R.R. Nelms (With 10 Figures)	338
Preliminary Study of a Tunable Narrow Line Double Pulse Alexandrite Laser for Meteorological DIAL Applications By C. Loth, J. Pelon, P.H. Flamant, and G. Megie (With 5 Figures)	354
Nonlinear Infrared Frequency Conversion in AgGaS ₂ and AgGaSe ₂ By Y.X. Fan, R.C. Eckardt, R.L. Byer, R.K. Route, and R.S. Feigelson	360
Non-Linear Conversion of 1.3 μ m Nd:YLF Emission By H.H. Zenzie, M. Thomas, C. Carey, E.P. Chicklis, and M. Knights (With 2 Figures)	364
Index of Contributors	367