Analyse von Turbulenzmechanismen in naturnahen Fließgewässern und ihre mathematische Formulierung für hydrodynamische Modelle

Dissertation am Arbeitsbereich Wasserbau 2004

von Kaj Lippert

INHALTSVERZEICHNIS:

1	PROBLEMFORMULIERUNG			1
	1.1	Allge	emeine Beschreibung	1
	1.2	Aufg	abenstellung	5
2	P	ROBLE	EMANALYSE	7
	2.1	Einfü	ihrung	7
	2.2	Gegli	iederte Gerinne	7
	2 .	.2.1	Physikalische Beschreibung	8
	2.	2.2	Mathematische Beschreibung	16
	2.3	Kurv	venströmungen	17
	2.	.3.1	Physikalische Beschreibung	18
	2.	.3.2	Mathematische Beschreibung	20
	2.	.3.3	Erfahrungen mit 2d-tiefengemittelten Simulationen	<i>28</i>
3	M	L ATHE	MATISCHE BESCHREIBUNG DER STRÖMUNG	33
	3.1	Grun	idgleichungen	33
			oliskraft	35
	3.3	Wind	dschubspannung	36
	3.4	Sohlı	rauigkeit	36
	3.5	Besc	hreibung der Turbulenz	40
	3.	.5.1	Null-Gleichungs-Modelle	41
	3.6	Besc	hreibung der Dispersion	45
4	N	Iumer	USCHES LÖSUNGSVERFAHREN	51
	4.1	Einfi	ührung	51
	4.2	Gale	rkin-Finite-Elemente-Methode	52
	4.2.1		Allgemeine Beschreibung	<i>52</i>
	4	.2.2	Die Schwache Formulierung	55
	4.2.3		Numerische Integration	57
	4.2.4		Zeitdiskretisierung	63
	4	.2.5	Lösen der nichtlinearen Gleichungen	64
	4	.2.6	Implementierung der Randbedingungen	65
	4.3	Kont	troll-Volumen-Finite-Elemente-Methode	67
	4	.3.1	Allgemeine Beschreibung	67
	4	.3.2	Massenerhaltung für das Kontrollvolumen	68
	4	.3.3	Numerische Integration	69
5	Γ	OAS VE	ERSUCHSPROGRAMM	73

	5.1	Einfü	hrung	73
	5.2	Besch	eschreibung der Untersuchungsabschnitte	
	5.2.1		Lippe, Deichstrecke Dorsten	<i>75</i>
	5.	.2.2	Stör bei Kellinghusen	81
	5.	.2.3	Rhein bei Mündelheim	87
	5.3	Messi	nethodik	90
	5.	.3.1	Differential Global Positioning System (DGPS)	90
	5.	.3.2	Ultraschall-Doppler-Gerät zur Messung von Geschwindigkeitsprofilen (ADCP)	98
	5	.3.3	Acoustic Doppler Velocimeter (ADV)	113
	5.4	Zusar	nmenfassung	130
6	E	RGEBN	ISSE DER MESSUNGEN	133
	6.1 Lipp		, Deichstrecke Dorsten	133
	6	5.1.1	Strömungsgeschwindigkeit	133
	6	5.1.2	Turbulenzintensität	142
	6	5.1.3	Turbulente Schubspannungen	144
	6.2	Stör b	ei Kellinghusen	150
	6	5.2.1	Strömungsgeschwindigkeit	150
	6	.2.2	Turbulenzintensität	156
	6	.2.3	Turbulente Schubspannungen	157
	6.3	Rhein	bei Mündelheim	160
7	V	ERIFIK	ATION DER VERFAHREN ZUR TURBULENZ- UND DISPERSIONSMODELLIERUNG	165
	7.1	Allge	meine Bemerkungen	165
	7.2	Verifi	kation der Turbulenzmodelle	166
	7.	.2.1	Beispiel Lippe	166
	7.	.2.2	Beispiel Stör	174
	7.	.2.3	Beispiel Rhein	178
	7.3	Verif	kation des Dispersions-Ansatzes	179
	7.4		ändige FE-Formulierung versus Vereinfachung	
	7.5		EM versus GFEM	
	7.6	7.6 Zusammenfassung		
8	S	CHLUS	SFOLGERUNGEN UND AUSBLICK	187
V	ERZEI	ICHNIS :	DER SYMBOLE UND FORMELZEICHEN	189
A	BBILI	DUNGSV	/ERZEICHNIS	195
T.	ABELI	LENVEF	ZEICHNIS	201
A	NHAN	IG A: A	.PPROXIMATIONSFUNKTIONEN	203

ANHANG B: WICHTUNGSFAKTOREN DER GAUßINTEGRATION	205
Anhang C: Ableitungen für das Newton-Raphson-Verfahren	207
ANHANG D: GERÄTESPEZIFIKATION GPS, LEICA SR530	211
ANHANG E: GERÄTESPEZIFIKATION ADCP, WH RIO GRANDE 600 KHZ, FA. RDI	213
ANHANG F: GERÄTESPEZIFIKATION ADV-SONDE VECTOR, FA. NORTEK	215
Anhang G: Analyse und Bewertung von binären ADV-Rohdaten	217
G.1 Einführung	217
G.2 Binäres Vector Datenformat	217
G.2.1 Generelle Daten	218
G.2.2 Vector spezifische Daten (Messwerte)	221
G.3 Datentransfer versus Qualität	225
Anhang H: Überlagerung von ADV und virtueller GPS-Bewegung (Labor)	229
Anhang I: Messergebnisse, Auswertung Stör Profil 02, 14.02.02	233
ANHANG J.1: FE-MODELL LIPPE	235
ANHANG J.2: MODELLTOPOGRAPHIE LIPPE	236
ANHANG K.1: FE-MODELL STÖR	237
Anhang K.2: Modelltopographie Stör	238
ANHANG L.1: FE-MODELL RHEIN	239
ANHANG L.2: MODELLTOPOGRAPHIE RHEIN	240
ANHANG M: VERIFIKATION DES DISPERSIONSANSATZES VON LIEN ET AL.	241
A LITOR ENIPROFIL	243