Rolf Steinbuch

Simulation im konstruktiven Maschinenbau

Anwendung von FEM- und verwandten Systemen in der Konstruktion

Mit 190 Bildern

Inhaltsverzeichnis

1	Moti	vation	17
	1.1	Erscheinungsformen der Simulation	18
	1.2	Ziel der Simulation	
	1.3	Ökonomische Bedeutung der Simulation	
	1.4	Diskrete und kontinuierliche Probleme	
	1.5	Kontinuumsmechanische Modelle	32
	1.6	Ziel des Buchs	33
2	Simulation in der Entwicklung		
	2.1	Der Produktentwicklungsprozess	35
	2.2	Frontloading	38
	2.3	Simulation im CAE-Prozess	
	2.4	Möglichkeiten und Grenzen	41
	2.5	Merkenswertes	48
3	Simulationswerkzeuge		
	3.1	Klassische Werkzeuge	49
	3.2	Rechensysteme	50
	3.3	CAD-Systeme	52
	3.4	Pre- und Postprozessoren	55
	3.5	Kontinuumsmechanische Programme	56
	3.6	Andere Simulationssysteme	
	3.7	Einsatz der Systeme	58
	3.8	Merkenswertes	60
4	Modellbildung		
	4.1	Klassifizierung der Simulationsaufgaben	61
		4.1.1 Symmetrien: eben, axialsymmetrisch oder räumlich	
		4.1.2 Stäbe, Balken und Schalen	65
		4.1.3 Stationär, statisch oder transient, dynamisch	
		4.1.4 Linear oder nichtlinear	
		4.1.5 Ein oder mehrere physikalische Problemkreise	
	4.2	Drei Bestandteile eines Simulationsmodells	
		4.2.1 Geometrie	77

Inha	ıltsve	rzei	chnis

4.2.2

12

		4.2.3 Randbedingungen	90
	4.3	Daten und Unschärfen	
	4.4	Merkenswertes	
5	Erge	ebnisinterpretation	97
	5.1	Welche Ergebnisse fallen an?	97
		5.1.1 Lösung des Gleichungssystems	
		5.1.2 Dehnungen und Spannungen	
		5.1.3 Numerische Konvergenz	
		5.1.4 Technische Konvergenz	
	5.2	Zulässige Spannungen	
		5.2.1 Versagensarten	
		5.2.2 Statische Festigkeit	
		5.2.3 Schwingende Beanspruchung	
		5.2.4 Sicherheit und Ausfallwahrscheinlichkeit	
		5.2.5 Bruchmechanische Kennwerte	
		5.2.6 Kriechen und Relaxation	
		5.2.7 Kombinierte Beanspruchung	
		5.2.8 Weitere Einflussgrößen auf die zulässige Spannung	
	5.3	Berechnete und zulässige Beanspruchung	
		5.3.1 Ein pragmatischer Ansatz	
		5.3.2 Automatisierte Auswertung	
	5.4	Typische Fehlinterpretationen	
		5.4.1 Klassifikation der Fehlinterpretationen	
		5.4.2 Vermeiden von Fehlinterpretationen	
	5.5	Nichtstrukturmechanische Probleme	
		5.5.1 Konvergenzbetrachtungen	
		5.5.2 Bewertung der Ergebnisse	
	5.6	Merkenswertes	
6	Eini	ge Simulationsanwendungen	137
	6.1	Festigkeitsanalyse	138
		6.1.1 Lineare Elastostatik	
		6.1.2 Dynamik	
		6.1.3 Modellaufbereitung	
	6.2	Potentialprobleme	
		6.2.1 Geometrie	
		6.2.2 Werkstoff	
		6.2.3 Randbedingungen	
	6.3	Fluidmechanik	
		6.3.1 Geometrie	
		6.3.2 Werkstoff	
		6.3.3 Randbedingungen	
	6.4	Elektrodynamik	
		y	

Werkstoff......83

		6.4.1 Geometrie	150
		6.4.2 Werkstoff	150
		6.4.3 Randbedingungen	
	6.5	Akustik	151
		6.5.1 Geometrie	152
		6.5.2 Werkstoff	
		6.5.3 Randbedingungen	152
	6.6	Gekoppelte Analysen	
	6.7	Merkenswertes	
7	Nich	tlineare Fragen	155
	7.1	Lineare und nichtlineare Probleme	155
	7.2	Klassifizierung nichtlinearer Fragen	
	7.3	Handlungsansätze	
	7.5	7.3.1 Netzqualität	
		7.3.2 Elementtypen	
		7.3.3 Integrationsverfahren	
		7.3.4 Lösungsansätze für einige nichtlineare Beispiele	
	7.4	Mehrdeutige Probleme	
	7.5	Nichtstruktur- und fluidmechanische Probleme	
	7.6	Erfahrungen mit nichtlinearen Fragen	
	7.0 7.7	Merkenswertes	
8	Fort	schrittliche Anwendungen	
	8.1	Appetit kommt beim Essen	183
	8.2	Gekoppelte nichtlineare Analysen	
	8.3	Optimierung	188
		8.3.1 Begriffsbildung	189
		8.3.2 Lineare und nichtlineare Optimierung	
		8.3.3 Formoptimierung	194
		8.3.4. Topologieoptimierung	
		8.3.5 Genetische Optimierung	
	8.4	Robustheit	207
	8.5	Merkenswertes	209
9	Der	Simulationsprozess	211
	9.1	Der Auftrag, Auftraggeber und -nehmer	211
		9.1.1 Pflichtenheft	212
		9.1.2 Daten	
		9.1.3 Dokumentation	
	9.2	Qualität und Zuverlässigkeit in der Simulation	
	7.2	9.2.1. Warum Qualitätssicherung in der Simulation?	
		9.2.2. Begriffsbildung	
		9.2.3. Ursachen der Qualitäts- und Zuverlässigkeitsprobleme	223
		9.2.4. Lösungsansätze	
		,	

14	Inhaltsverzeichnis	

	9.3	Menschen im Simulationsprozess	
		9.3.1 Wer simuliert wie und in welcher Funktion?	
		9.3.2 Probleme im Arbeitsalltag	
	9.4	9.3.3 Maßnahmen zur sozialen Qualitätssicherung	
	9.4	Merkenswertes	244
10	Ausb	lick	245
	10.1	Prognosefähigkeit	245
	10.2	Technische Entwicklungen	246
		10.2.1 Hardware	246
		10.2.2 Software	
		10.2.3 Kopplung CAD-Simulation	248
		10.2.4 Virtual Reality	
		10.2.5 Deterministische oder stochastische Interpretation	249
		10.2.6 Computergläubigkeit	
		10.2.7 Bathes Aufgabenstellungen	
	10.3	Wissenschaftlich-technische Implikationen	252
	10.4	Soziale Implikationen	252
	10.5	Bedenkenswertes	253
A1	Simu	lieren heißt Rechnen	255
	A1.1	Konvergenz	255
	A1.2	Nullstellen und Extremwerte	
	111.2	A1.2.1*Nullstellen	
		A1.2.2 Extremwerte	
	A1.3	Lineare Gleichungssysteme	
	11110	A1.3.1 Direkte Lösungsverfahren	
		A1.3.2 Iterative Lösungsverfahren	
		A1.3.3 Nichtlineare Gleichungssysteme	
		A1.3.4 Eigenwertberechnung	
	A1.4	Numerische Integration	
	711	A1.4.1 Polynomintegration.	
		A1.4.2 Gaußverfahren	
	A1.5	Gewöhnliche Differentialgleichungen (DGL)	
	11110	A1.5.1 Anfangswertaufgaben	
		A1.5.2 Randwertaufgaben (RWA)	
		A1.5.3 Anfangs-Randwertaufgaben (ARWA)	
		A1.5.4 Fehlerfortpflanzung	
A2	Nume	erik der Kontinuumsmechanik	289
	A2.1	DGL der Erhaltungssätze	291
		A2.1.1 Potentialmechanik	
		A2.1.2 Elastomechanik	
		A2.1.3 Akustik.	
		A2.1.5 Magnetostatik	
		5	

A2.1.6 Elektrodynamik	301
A2.1.7 Fluidmechanik	
A2.2 Diskretisieren der PDGL	
A2.2.1 Finite Differenzen Methode (FDM)	
A2.2.2 Finite Elemente Methode (FEM)	
A2.2.3 Finite Volumen Methode (FVM)	
A2.2.4 Boundary Element Methode (BEM)	
A2.3 Lösungen der diskreten Systeme	
A2.3.1 Stationäre Probleme	
A2.3.2 DGL 1. Ordnung in der Zeit	
A2.3.3 DGL 2. Ordnung in der Zeit	
A2.4 Zur Finite-Elemente-Methode	311
A2.4.1 Ansatzfunktionen und Elemente	311
A2.4.2 Konvergenz	317
A2.4.3 Sonderelemente	
A2.4.4 Element und System	320
A2.5 Nicht-Kontinuumsmechanische Probleme	
A2.6 Merkenswertes	322
Literatur	323
Stichwortverzeichnis	325