DYNAMICS OF STRUCTURES Theory and Applications to Earthquake Engineering

International Edition

ŝ

Anil K. Chopra

University of California at Berkeley

Fourth Edition

PEARSON

Prentice Hall

Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo-

Contents

.

з

	Forew	ord	xxi
	Prefac		xxiii
	Ackno	owledgments	хххі
PARTI SI	NGLE-D	EGREE-OF-FREEDOM SYSTEMS	1
1	Equati Metho	ions of Motion, Problem Statement, and Solution ds	3
	1.1	Simple Structures 3	
	1.2	Single-Degree-of-Freedom System 7	1
	1.3	Force–Displacement Relation 8	
	1.4	Damping Force 12	
	1.5	Equation of Motion: External Force 14	
	1.6	Mass-Spring-Damper System 19	
	1.7	Equation of Motion: Earthquake Excitation 23	a start .
	1.8	Problem Statement and Element Forces 26	

ix

1.9 [°]	Combining Static and Dynamic Responses 28
1.10	Methods of Solution of the Differential Equation 28
1.11	Study of SDF Systems: Organization 33
,	Appendix 1: Stiffness Coefficients for a Flexural Element 33

2 Free Vibration

2.1	Undamped Free Vibration 39	
2.2	Viscously Damped Free Vibration	48
2.3	Energy in Free Vibration 56	
2.4	Coulomb-Damped Free Vibration	57

3 Response to Harmonic and Periodic Excitations

Part A:	Viscously Damped Systems: Basic Results 66
3.1	Harmonic Vibration of Undamped Systems 66
3.2	Harmonic Vibration with Viscous Damping 72
Part B: `	Viscously Damped Systems: Applications 85
3.3	Response to Vibration Generator 85
3.4	Natural Frequency and Damping from Harmonic Tests 87
3.5	Force Transmission and Vibration Isolation 90
3.6	Response to Ground Motion and Vibration Isolation 91
3.7	Vibration-Measuring Instruments 95
3.8	Energy Dissipated in Viscous Damping 99
3.9	Equivalent Viscous Damping 103
Part C:	Systems with Nonviscous Damping 105
3.10	Harmonic Vibration with Rate-Independent Damping 105

3.11 Harmonic Vibration with Coulomb Friction 109

X

4

Part D: Response to Periodic Excitation 113

3.12 Fourier Series Representation 114 Response to Periodic Force 114 3.13 Appendix 3: Four-Way Logarithmic Graph Paper 118 Response to Arbitrary, Step, and Pulse Excitations Part A: Response to Arbitrarily Time-Varying Forces 125 4.1 Response to Unit Impulse 126 4.2 Response to Arbitrary Force 127 Part B: Response to Step and Ramp Forces 129 4.3 Step Force 129 4.4 Ramp or Linearly Increasing Force 131 4.5 Step Force with Finite Rise Time 132 Part C: Response to Pulse Excitations 135 4.6 Solution Methods 135 4.7 Rectangular Pulse Force 137 4.8 Half-Cycle Sine Pulse Force 143 4.9 Symmetrical Triangular Pulse Force 148 4.10 Effects of Pulse Shape and Approximate Analysis for Short Pulses 151 4.11 Effects of Viscous Damping 154 4.12 **Response to Ground Motion** 155

5 Numerical Evaluation of Dynamic Response

5.1	Time-Step	oping	Methods	165

- 5.2 Methods Based on Interpolation of Excitation 167
- **5.3** Central Difference Method 171
- 5.4 Newmark's Method 174
- 5.5 Stability and Computational Error 180

xi

165

	5.6	Nonlinear Systems: Central Difference Method 183	
	5.7	Nonlinear Systems: Newmark's Method 183	
6	Earthq	uake Response of Linear Systems	197
	6.1	Earthquake Excitation 197	
	6.2	Equation of Motion 203	
	6.3	Response Quantities 204	
	6.4	Response History 205	
	6.5	Response Spectrum Concept 207	
,	6.6	Deformation, Pseudo-Velocity, and Pseudo-Acceleration Response Spectra 208	
	6.7	Peak Structural Response from the Response Spectrum 217	
	6.8	Response Spectrum Characteristics 222	
	6.9	Elastic Design Spectrum 230	
	6.10	Comparison of Design and Response Spectra 239	
	6.11	Distinction between Design and Response Spectra 241	
ř	6.12	Velocity and Acceleration Response Spectra 242	
		Appendix 6: El Centro, 1940 Ground Motion 246	
7	Earthq	uake Response of Inelastic Systems	257
	7.1	Force–Deformation Relations 258	
	7.2	Normalized Yield Strength, Yield Strength Reduction Factor, and Ductility Factor 265	
	7.3	Equation of Motion and Controlling Parameters 266	2
	7.4	Effects of Yielding 267	
	7.5	Response Spectrum for Yield Deformation and Yield Strength 274	
	7.6	Yield Strength and Deformation from the Response Spectrum 278	
	7.7	Yield Strength–Ductility Relation 278	

	7.8	Relative Effects of Yielding and Damping 280	
	7.9	Dissipated Energy 281	
	7.10	Supplemental Energy Dissipation Devices 284	
	7.11	Inelastic Design Spectrum 289	
	7.12	Applications of the Design Spectrum 296	
	7.13	Comparison of Design and Response Spectra 302	
8	Genera	alized Single-Degree-of-Freedom Systems	307
	8.1	Generalized SDF Systems 307	
•	8.2	Rigid-Body Assemblages 309	
	8.3	Systems with Distributed Mass and Elasticity 311	
	8.4	Lumped-Mass System: Shear Building 323	
	8.5	Natural Vibration Frequency by Rayleigh's Method 330	
	8.6	Selection of Shape Function 334	
		Appendix 8: Inertia Forces for Rigid Bodies 338	
PART II M	ULTI-DE	GREE-OF-FREEDOM SYSTEMS	345
9	Equati Metho	ions of Motion, Problem Statement, and Solution ds	347
	9.1	Simple System: Two-Story Shear Building 347	
	9.2	General Approach for Linear Systems 352	
	9.3	Static Condensation 369	
	9.4	Planar or Symmetric-Plan Systems: Ground Motion 372	
	9.5	One-Story Unsymmetric-Plan Buildings 377	
	9.6	Multistory Unsymmetric-Plan Buildings 383	
	9.7	Multiple Support Excitation 387	
	9.8	Inelastic Systems 392	
	9.9	Problem Statement 392	

xiii

•

9.10	Element Forces 393		
9.11	Methods for Solving the Equations of Motion: Overview 393		
Free Vi	bration		
Part A:	Natural Vibration Frequencies and Modes 404		
10.1	Systems without Damping 404		
10.2	Natural Vibration Frequencies and Modes 406		
10.3	Modal and Spectral Matrices 408		
10.4	Orthogonality of Modes 409		
10.5	Interpretation of Modal Orthogonality 410		
10.6	Normalization of Modes 410		
10.7	Modal Expansion of Displacements 420		
Part B:	Free Vibration Response 421		
10.8	Solution of Free Vibration Equations: Undamped Systems 421		
10.9	Systems with Damping 424		
10.10	Solution of Free Vibration Equations: Classically Damped Systems 425		
Part C:	Computation of Vibration Properties 428		
10.11	Solution Methods for the Eigenvalue Problem 428		
10.12	Rayleigh's Quotient 430		
10.13	Inverse Vector Iteration Method 430		
10.14	Vector Iteration with Shifts: Preferred Procedure 435		
10.15	Transformation of $\mathbf{k}\phi = \omega^2 \mathbf{m}\phi$ to the Standard Form 440		
Damping in Structures			
Part A: Experimental Data and Recommended Modal Damping Ratios 447			

- **11.1** Vibration Properties of Millikan Library Building 447
- **11.2** Estimating Modal Damping Ratios 452

xiv

10

11

ſ

ŝ

403

447

and the second s

	Part B:	Construction of Damping Matrix 454	
	11.3	Damping Matrix 454	
	11.4	Classical Damping Matrix 455	
	11.5	Nonclassical Damping Matrix 464	
12	Dynan	nic Analysis and Response of Linear Systems	467
	Part A:	: Two-Degree-of-Freedom Systems 467	
	12.1	Analysis of Two-DOF Systems Without Damping 467	
	12.2	Vibration Absorber or Tuned Mass Damper 470	
	Part B:	Modal Analysis 472	
	12.3	Modal Equations for Undamped Systems 472	
	12.4	Modal Equations for Damped Systems 475	
	12.5	Displacement Response 476	
	12.6	Element Forces 477	
	12.7	Modal Analysis: Summary 477	
	Part C:	Modal Response Contributions 482	
	12.8	Modal Expansion of Excitation Vector $\mathbf{p}(t) = \mathbf{s}p(t)$ 482	
	12.9	Modal Analysis for $\mathbf{p}(t) = \mathbf{s}p(t)$ 486	
	12.10	Modal Contribution Factors 487	
	12.11	Modal Responses and Required Number of Modes 489	
	Part D:	Special Analysis Procedures 496	
	12.12	Static Correction Method 496	
	12.13	Mode Acceleration Superposition Method 499	
	12.14	Mode Acceleration Superposition Method: Arbitrary Excitation 500	
13	Earthq	uake Analysis of Linear Systems	513
	Part A:	Response History Analysis 514	
	13.1	Modal Analysis 514	
	13.2	Multistory Buildings with Symmetric Plan 520	

Contents

,

	13.3	Multistory Buildings with Unsymmetric Plan 540
	13.4	Torsional Response of Symmetric-Plan Buildings 551
	13.5	Response Analysis for Multiple Support Excitation 555
	13.6	Structural Idealization and Earthquake Response 561
	Part B:	Response Spectrum Analysis 562
	13.7	Peak Response from Earthquake Response Spectrum 562
	13.8	Multistory Buildings with Symmetric Plan 567
	13.9	Multistory Buildings with Unsymmetric Plan 579
	13.10	A Response-Spectrum-Based Envelope for Simultaneous Responses 587
	13.11	Peak Response to Multicomponent Ground Motion 595
14	Analys	is of Nonclassically Damped Linear Systems 617
	Part A:	Classically Damped Systems: Reformulation 618
	14.1	Natural Vibration Frequencies and Modes 618
	14.2	Free Vibration 619
	14.3	Unit Impulse Response 620
	14.4	Earthquake Response 621
	Part B:	Nonclassically Damped Systems 622
	14.5	Natural Vibration Frequencies and Modes 622
	14.6	Orthogonality of Modes 623
	14.7	Free Vibration 627
	14.8	Unit Impulse Response 632
	14.9	Earthquake Response 636
	14.10	Systems with Real-Valued Eigenvalues 638
	14.11	Response Spectrum Analysis 646
	14.12	Summary 647
		Appendix 14: Derivations 648

15	Reduc	tion of Degrees of Freedom	657
	15.1	Kinematic Constraints 658	
	15.2	Mass Lumping in Selected DOFs 659	
	15.3	Rayleigh–Ritz Method 659	
	15.4	Selection of Ritz Vectors 663	
	15.5	Dynamic Analysis Using Ritz Vectors 668	
16	Numei	rical Evaluation of Dynamic Response	673
	16.1	Time-Stepping Methods 673	
	16.2	Linear Systems with Nonclassical Damping 675	
	16.3	Nonlinear Systems 681	
17	Syster	ns with Distributed Mass and Elasticity	697
	17.1	Equation of Undamped Motion: Applied Forces 698	
	17.2	Equation of Undamped Motion: Support Excitation 699	
	17.3	Natural Vibration Frequencies and Modes 700	
	17.4	Modal Orthogonality 707	
	17.5	Modal Analysis of Forced Dynamic Response 709	
	17.6	Earthquake Response History Analysis 716	
	1 7. 7	Earthquake Response Spectrum Analysis 721	
	17 .8	Difficulty in Analyzing Practical Systems 724	
18	Introd	uction to the Finite Element Method	729
	Part A	: Rayleigh–Ritz Method 729	
	18.1	Formulation Using Conservation of Energy 729	
	18.2	Formulation Using Virtual Work 733	
	18.3	Disadvantages of Rayleigh–Ritz Method 735	
	Part B	: Finite Element Method 735	
	18.4	Finite Element Approximation 735	****
,	18.5	Analysis Procedure 737	

xvii

VV/HI	
VA A III	

	18.6	Element Degrees of Freedom and Interpolation Functions 739	
	18.7	Element Stiffness Matrix 740	
	18.8	Element Mass Matrix 741	
	18.9	Element (Applied) Force Vector 743	
	18.10	Comparison of Finite Element and Exact Solutions 747	
	18.11	Dynamic Analysis of Structural Continua 748	
		IAKE RESPONSE, DESIGN, AND EVALUATION STORY BUILDINGS	755
19	Earthqu	uake Response of Linearly Elastic Buildings	757
	19.1	Systems Analyzed, Design Spectrum, and Response Quantities 757	
	19.2	Influence of T_1 and ρ on Response 762	
	19.3	Modal Contribution Factors 763	
	19.4	Influence of T_1 on Higher-Mode Response 765	
	19.5	Influence of ρ on Higher-Mode Response 768	
	19.6	Heightwise Variation of Higher-Mode Response 769	
	19.7	How Many Modes to Include 771	
20	Earthqu	uake Analysis and Response of Inelastic Buildings	775
	Part A:	Nonlinear Response History Analysis 776	
L.	20.1	Equations of Motion: Formulation and Solution 776	
	20.2	Computing Seismic Demands: Factors To Be Considered 777	
	20.3	Story Drift Demands 781	
	20.4	Strength Demands for SDF and MDF Systems 787	
	Part B:	Approximate Analysis Procedures 788	
	20.5	Motivation and Basic Concept 788	
	20.6	Uncoupled Modal Response History Analysis 790	
, ,			

Contents

.

and the second second

	20.7	Modal Pushover Analysis 797	ŝ
	20.8	Evaluation of Modal Pushover Analysis 802	
	20.9	Simplified Modal Pushover Analysis for Practical Application 807	
21	Earthq	uake Dynamics of Base-Isolated Buildings	809
	21.1	Isolation Systems 809	
	21.2	Base-Isolated One-Story Buildings 812	
	21.3	Effectiveness of Base Isolation 818	
	21.4	Base-Isolated Multistory Buildings 822	×
	21.5	Applications of Base Isolation 828	~
22	Structu	ural Dynamics in Building Codes	835
	Part A:	Building Codes and Structural Dynamics 836	
	22.1	International Building Code (United States), 2009 836	
	22.2	National Building Code of Canada, 2010 839	
	22.3	Mexico Federal District Code, 2004 841	
	22.4	Eurocode 8, 2004 844	
	22.5	Structural Dynamics in Building Codes 846	
	Part B:	Evaluation of Building Codes 852	
	22.6	Base Shear 852	
	22.7	Story Shears and Equivalent Static Forces 856	
	22.8	Overturning Moments 858	
	22.9	Concluding Remarks 861	
23	Structu	ural Dynamics in Building Evaluation Guidelines	863
	23.1	Nonlinear Dynamic Procedure: Current Practice 864	
	23.2	SDF-System Estimate of Roof Displacement 865	
	23.3	Estimating Deformation of Inelastic SDF Systems 868	
	23.4	Nonlinear Static Procedures 874	
	23.5	Concluding Remarks 880	

-

xix

	Index	933
С	Answers to Selected Problems	917
B	Notation	905
A	Frequency-Domain Method of Response Analysis	883

л

'n